
Carotid Artery Stenting

Clinical Criteria

- Age greater than 80
- Unstable angina CCS III-IV
- EF< 30%
- MI within past 6 wks
- Severe COPD (FEV1 < 30% predicted)</p>
- Renarrowing after prior CEA (80% Asx; 50% Sx)
- Total occlusion of the contralateral ICA
- Two or more proximal or major coronary arteries with >70% stenosis

Anatomical Criteria

- Previous radiation treatment to neck
- Previous radical neck surgery
- Inability to extend neck
- Patient has a tracheostomy or tracheal stoma
- Laryngeal nerve palsy
- Lesion with difficult access

High Risk Features

Surgery

- Restenosis
- Previous RT
- Radical Neck
- CN Palsies
- Cardiac/Pulm dz
- Pre-OHS
- High/Low Lesions
- Contralateral Occl

- Elderly
- String Signs
- Thrombus
- Acute Stroke

Stenting

- Tortuosity
- Poor Access
- Coag/Platelet
- Severe Ca⁺⁺
- Arch Anatomy

Asymptomatic Carotid Stenosis

Which Asymptomatic Patients Benefit from CAS or CEA?

Standard Risk

- Stent
 - Young age, patients with heart problems, good anatomy for stent
- CEA
 - Old age, low cardiac risk, bad anatomy for stent
- Medical Alone
 - moderate stenosis

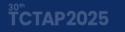
High Risk (for CEA)

- Stent
 - High anatomic risk, some physiologic high risk
- CEA
 - None
- Medical Alone
 - Over 80 years, moderate stenosis, women, some physiologic high risk, bad anatomy for stent

Patient Must Have Acceptable Anatomy High Risk Factors for CAS

Physiologic Anatomic • Age >80 Tortuous arch Calcified arch Diseased great vessels • Tortuous carotid artery Pre-occlusive lesion Heavy plaque burden Circumferential calcification • Echolucent plaque Thrombus in lesion

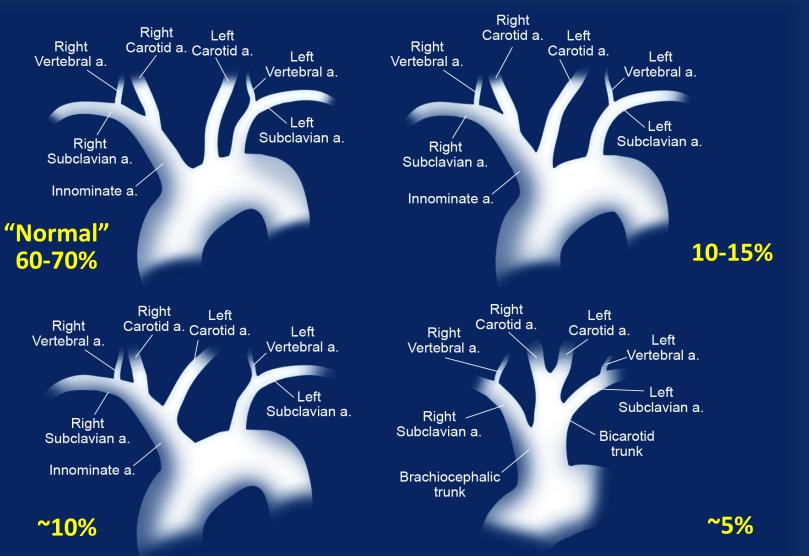
• Isolated cerebral hemisphere


Pre-procedural Risk Quantification for Carotid

Stenting Using the CAS Score

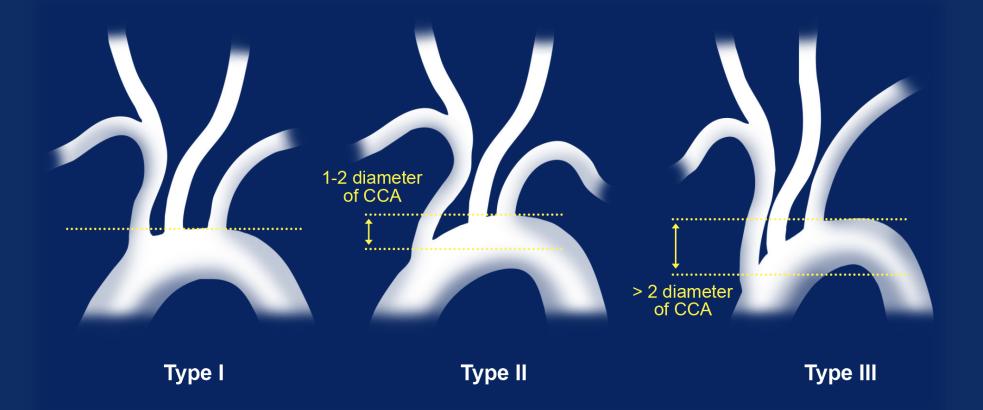
Risk model based on 11,122 carotid artery stenting (CAS) procedures from the NCDR CARE registry

Variable	Point Value
Impending major surgery	3
Previous stroke	3
Target lesion symptomatic in previous 6 months	2
Atrial fibrillation or flutter	1
Age, years	
<50	0
50–59	2
60–69	4
70–79	6
80–89	8
≥90	10
Previous ipsilateral CEA	-2


Scores above 5 exceeded the 3% threshold for 30-day events; Scores over 9 exceeded the 6% 30-day threshold

J Am Coll Cardiol 2012;60:1617–22

Aortic Arch Types



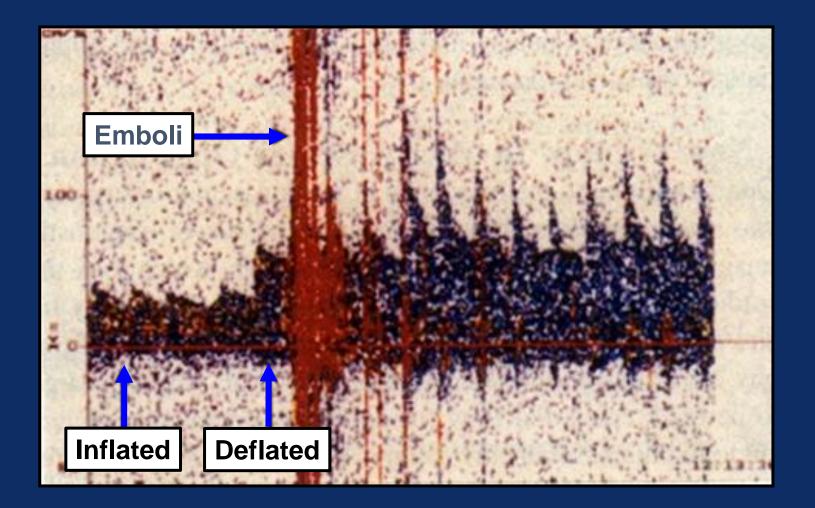
2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline Circulation. 2011;124:e54-e130

Aortic Arch Classification

J Invasive Cardiol. 2008 May;20(5):200-4

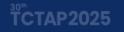
Features a/w increased procedural risks after carotid stenting

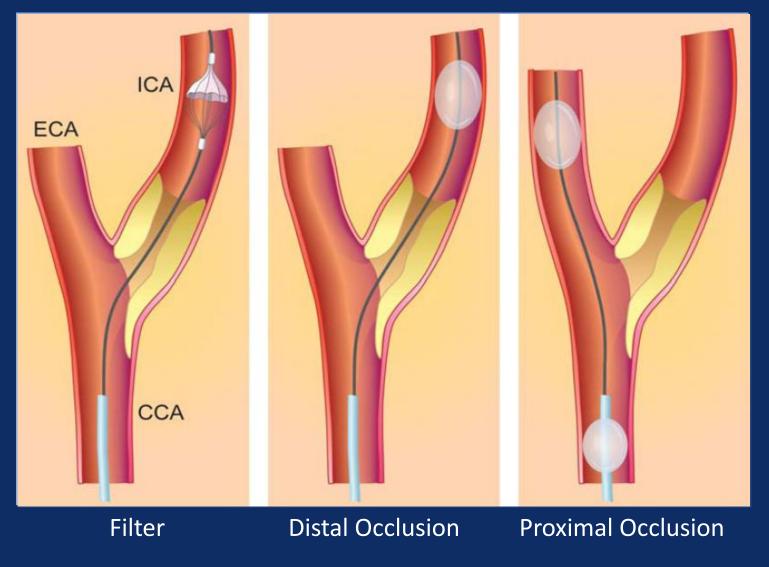
	Risk factors	Features
Advanced age Clinical Decreased cere	Advanced age	Age ≥ 80 yrs
	Decreased cerebral reserve	- Dementia - Prior (remote) stroke - Multiple lacunar infarcts - Intracranial microangiopathy
Angiographic	Excessive tortuosity	\geq 2 90° bends within 5 cm of the lesion
	Heavy calcification	- Concentric circumferential calcification - Width \ge 3mm
		Circulation 2006;113:2021-2030



Embolic Protection Device (EPD)

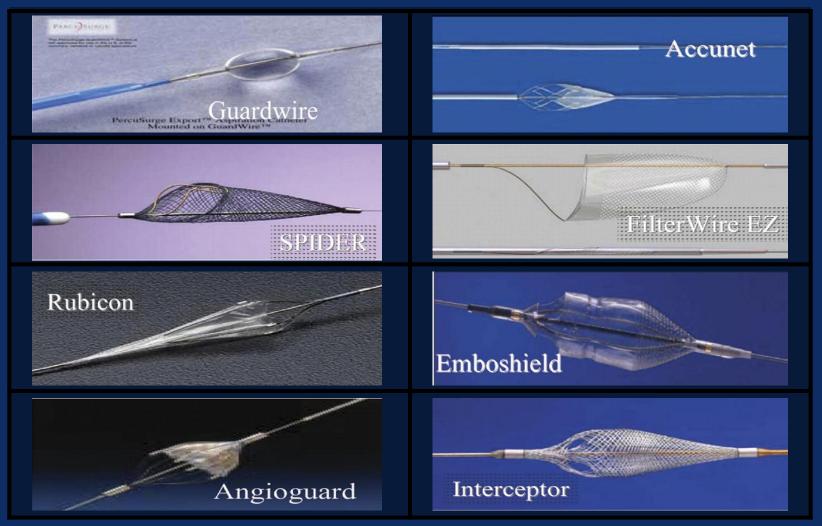
Trans Cranial Doppler During CAS

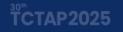



Carotid Artery Stenting Current status Embolic protection device (EPD)



Strategies for Emboli Protection Devices




Eur Heart J. 2009; 30: 2693-2704

Embolic Protection Devices (EPD)

ACCF/SCAI/SVMB/SIR/ASITN 2007 Clinical Expert Consensus Document on Carotid Stenting J Am Coll Cardiol 2007;49:126–70

Distal Occlusion

EPD - Balloon Occlusion Devices

Advantages

Disadvantages

- Easy to cross lesion
- Compatible with devices
- Aspirate large and small particles
- Reliably trap debris
- Easy device retrieval

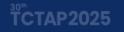
- No antegrade flow
- 5–8% are intolerant
- Balloon-induced injury
- Not as steerable as PTCA wires
- Difficult to image during the procedure

EPD - Filter Devices

Advantages

Disadvantages

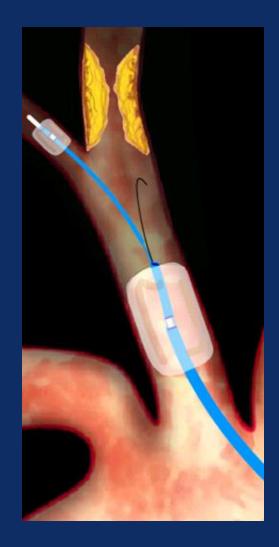
- Preserve antegrade flow
- Contrast imaging is possible throughout the procedure
- May not capture all debris
- Filters may clog, cause spasm
- Delivery catheters may cause embolization before filter deployment
- Retrieval sheath may snag on stents



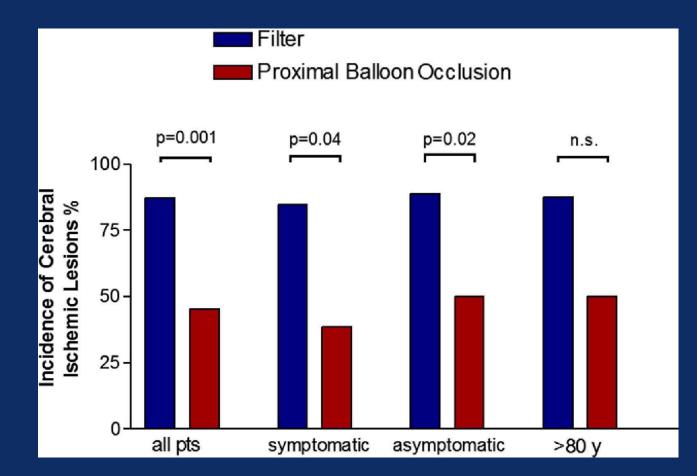
30-Day Events (TIA, Stroke, and Death)

Comparison	RR	95% CI	р
Proximal occlusion vs. filter			
Unadjusted	1.52	0.75–3.13	1.00
 Adjusted for RF, ST 	1.59	0.71–3.10	1.00
Distal occlusion vs. filter			
Unadjusted	2.72	0.71–10.51	0.96
 Adjusted for RF, ST 	3.38	0.55–10.87	0.54
Distal vs. proximal occlusion			
Unadjusted	1.79	0.40-7.96	1.00
 Adjusted for RF, ST 	1.79	0.40–7.96	1.00
Eccentric vs. concentric filter			
Unadjusted	0.59	0.38–0.92	0.04
 Adjusted for RF, ST 	0.76	0.47–1.22	0.51

The Type of Embolic Protection **Does Not Influence the Outcome** in


Carotid Artery Stenting

Proximal Balloon Occlusion - Mo.Ma


- Endovascular Clamping
- Protects the brain from embolization
 - Blocking antegrade blood flow from CCA
 - Blocking retrograde blood flow from ECA
- Protection is established even before the ICA lesion is crossed

The PROFI Study

Prevention of Cerebral Embolization by Proximal Balloon Occlusion Compared to Filter Protection During CAS) : A Prospective Randomized Trial

J Am Coll Cardiol. 2012 10;59(15) :1383–1389

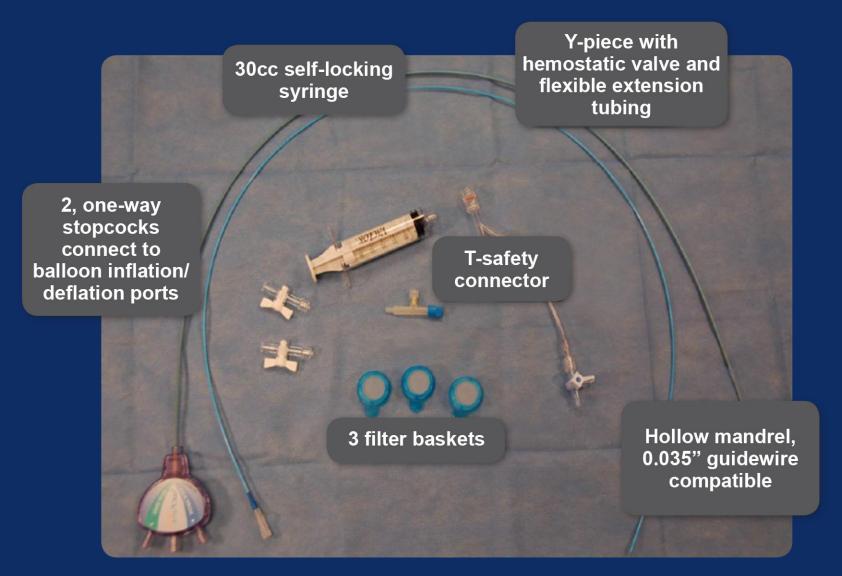


The PROFI Study

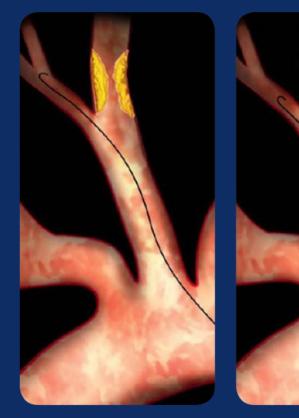
Symptomatic and asymptomatic pts randomized to filter protection (n = 31) or proximal balloon occlusion (n = 31).

- The incidence of new cerebral ischemic lesions was higher in the filter group (87.1% vs. 45.2%; P = 0.001)
- These findings were consistent regardless of symptomatic (P = 0.04) or asymptomatic (P = 0.02) status
- Pts with filter protection also had a higher mean volume (P = 0.0001) and number (P = 0.0001) of new ischemic lesions

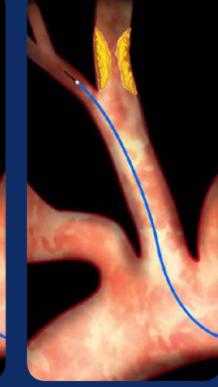
Conclusions: In patients undergoing carotid stenting, proximal balloon occlusion is associated with fewer new cerebral ischemic lesions than filter protection.



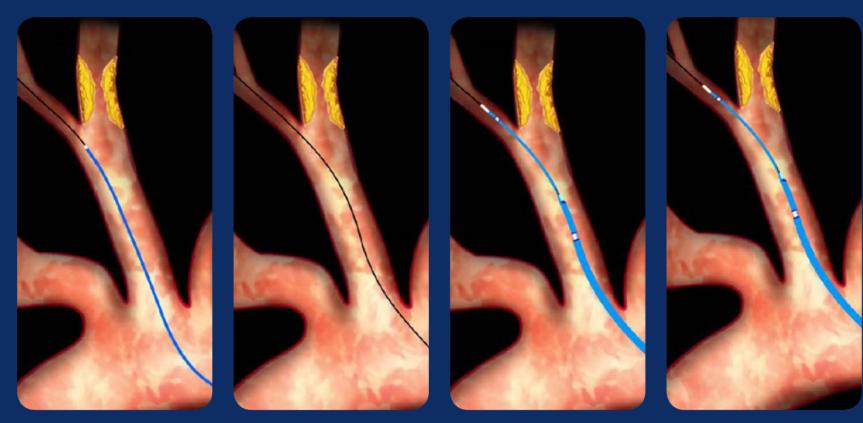
Mo.Ma Product Overview


	Over The Wire (OTW)	
Catheter design	Multiple layers of Pebax with anti-kinking spiral coil	
	and PTFE inner lumen	
Range of diameter	1) Outer diameter 8F, Inner diameter 5F	
	(1.76mm, 0.073")	
	2) Outer diameter 9F, Inner diameter 6F	
	(2.12mm, 0.084")	
Guidewire compatibility	0.035"	
Usable shaft length	95 cm	
Working channel length	104.5 cm	
Distal shaft profile	5F (1.66 mm)	
Introducer compatibility	1) 8F	
	2) 9F	
Balloon material:	Compliant elastomeric rubber	
Balloon occlusion range	up to 13 mm (prox.) up to 6 mm (dist.)	
Balloon marker distance	60 mm	

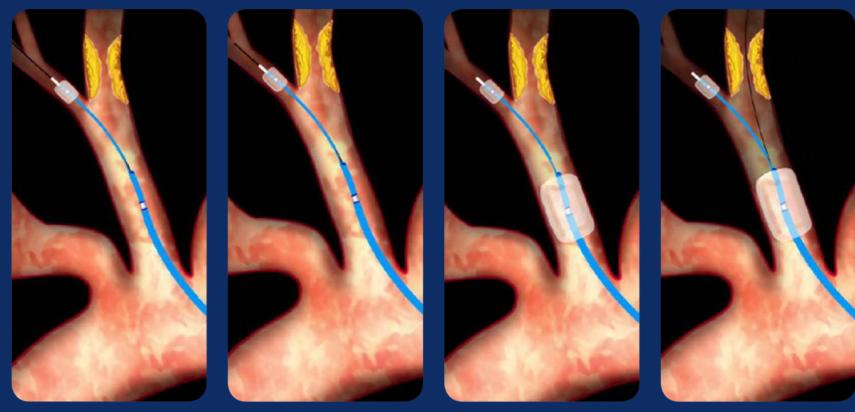
Mo.Ma



Introduction of steerable 0.035" wire into ECA

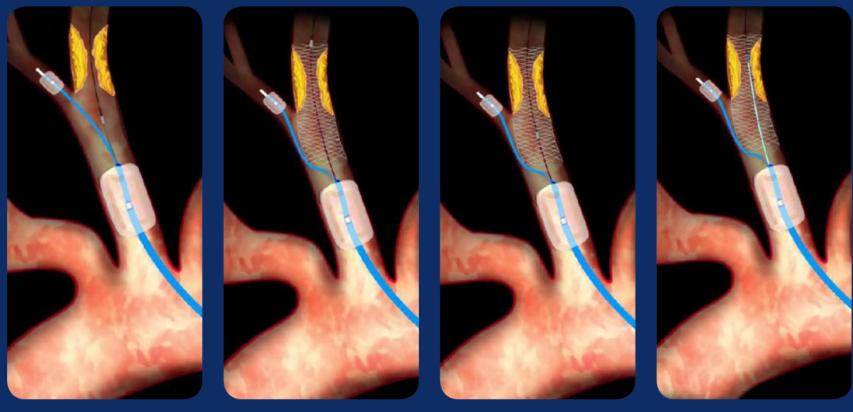


Introduce stiff 0.035" guidewire



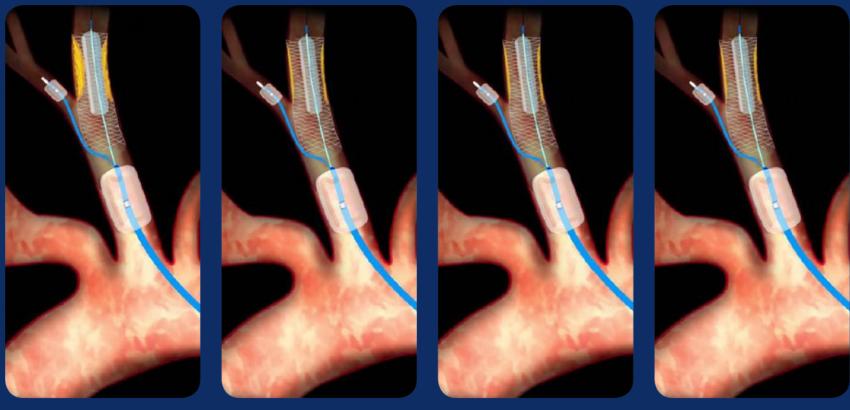
Remove diagnostic catheter Retain 0.035" wire to introduce Mo.Ma Ultra device Introduce Mo.Ma Ultra device Advance Mo.Ma Ultra device 1cm - 1.5cm into ECA

Remove mandrel; leave 0.035" guidewire in place. Inflate distal balloon in ECA


Remove 0.035" stiff guidewire

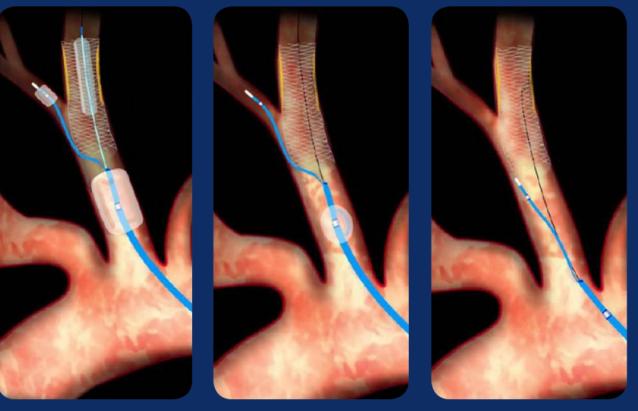
Inflate proximal balloon in the CCA

Advance 0.014" guidewire through lesion


Predilate or primary stent

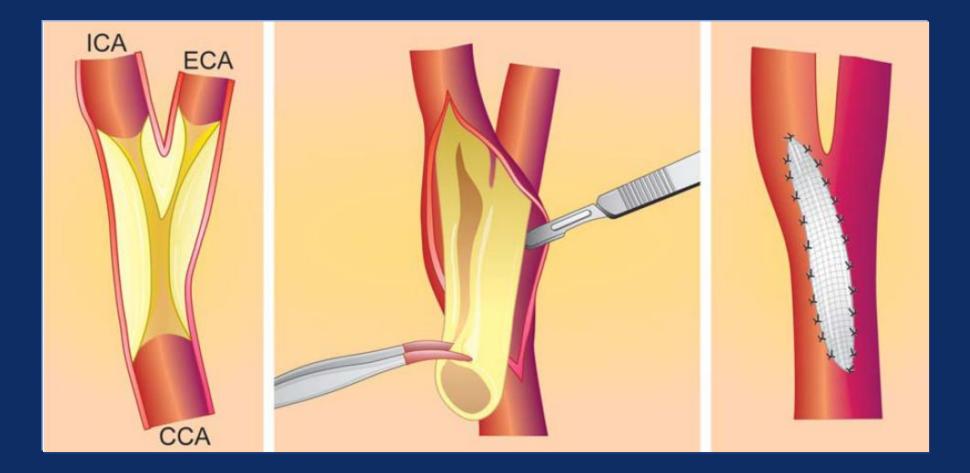
Place stent

Remove stent delivery system


Insert postdilatation balloon

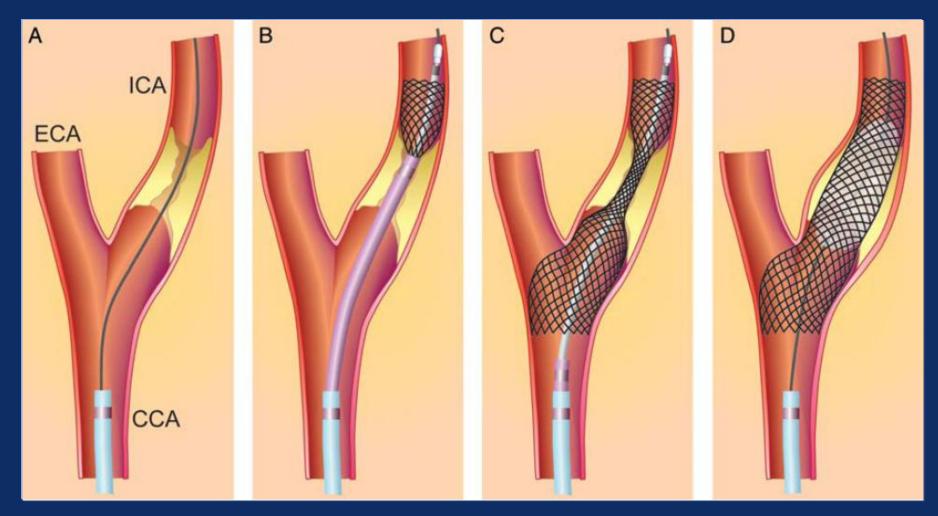
Inflate PTA balloon Deflate PTA balloon Retract PTA balloon Aspirate to remove debris

Deflate distal (ECA) balloon Deflate proximal (CCA) balloon Retract Mo.Ma Ultra device and guidewire



Carotid Endarterectomy vs. Carotid Stenting

Carotid Endarterectomy



Eur Heart J. 2009; 30: 2693-2704

Carotid Artery Stenting

Eur Heart J. 2009; 30: 2693-2704

Carotid Stent Randomized Trial Data

Pre-EPD

Normal risk/randomized
 WallStent trial-1999 (223)

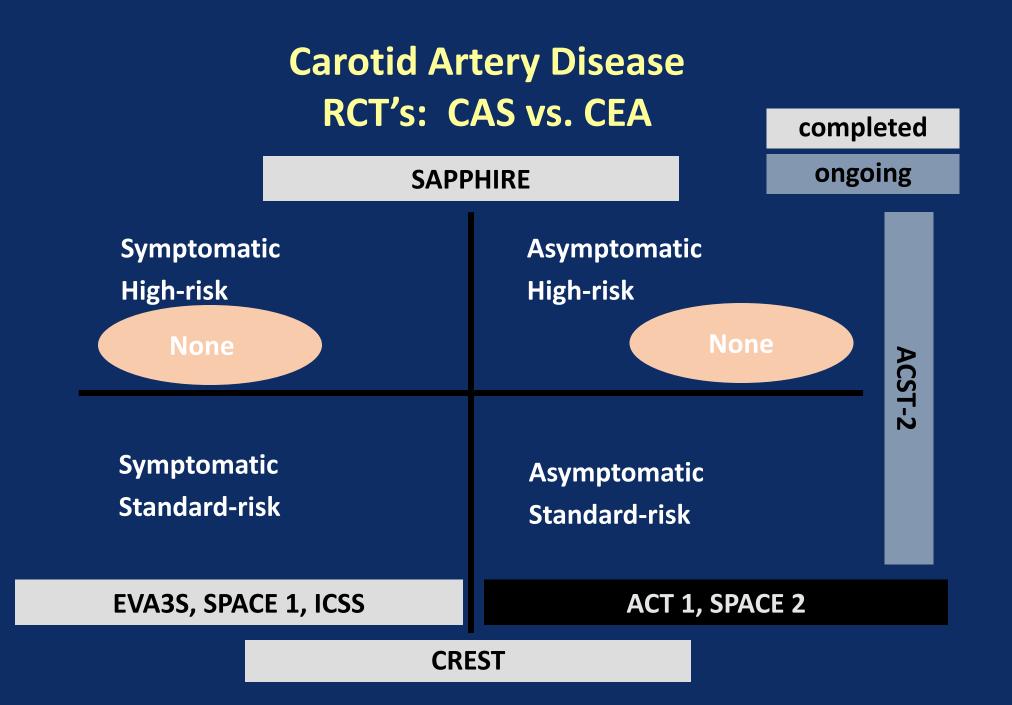
Post-EPD

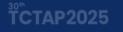
- Normal risk/symptomatic and asymptomatic/randomized
 - CREST, ACT 1
- Normal risk/symptomatic/randomized
 - EVA-3S, SPACE-1,
 - CAVATAS, ICSS
- High risk/symptomatic and asymptomatic/randomized
 - SAPPHIRE

Carotid Stent Registry Data – post EPD

High risk/registry

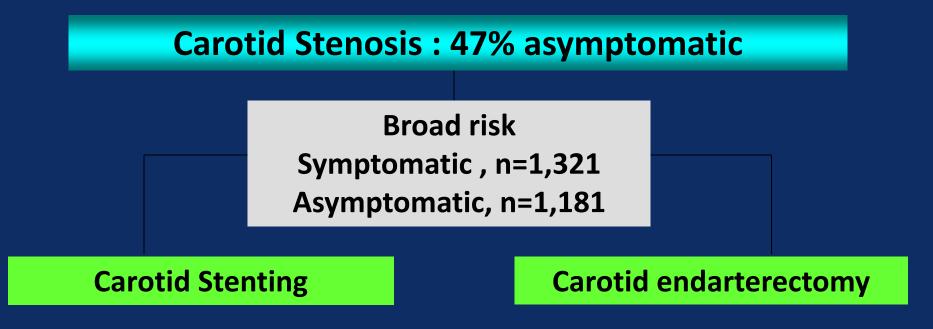
- SAPPHIRE-2002 (406)
- ARCHeR-2003 (581)
- SECuRITY-2003 (305)
- BEACH-2004 (408)
- CABERNET-2004 (454)
- CREATE -2005 (413)
- CAPTURE -2007 (3500)
- CASES PMS -2007 (1493)
- SAPPHIRE-W -2009 (2001)
- SVS -2009 (1450)
- EXACT -2009 (2145)
- CAPTURE 2 -2009 (4175)




Overview of major trials comparing CAE and CAS

Study	Year	Design	Symptomatic vs Asymptomatic	Results
SAPPHIRE		Randomized, prospective, multicenter	96/238	CAS not inferior to CEA in symptomatic or nonsymptomatic patients in the high surgical risk group
SPACE		Randomized, prospective, multicenter, European non inferiority trial	1,196/0	Ended after the second interim analysis owing to lack of recruitment
EVAS-3S	2006	Randomized, prospective, multicenter	527/0	CEA had better end point outcomes vs CAS for symptomatic stroke
ICSS		Randomized, prospective, multicenter	1,710/0	CAS had a higher rate of stroke, death, and MI versus CEA for symptomatic stroke
CREST		Randomized, prospective, multicenter, parallel, open label	1,326/1,176	CEA and CAS have similar safety and efficacy profiles

Curr Atheroscler Rep (2013) 15:345



CREST Trial

Carotid Revascularization Endarerectomy versus Stenting Trial

Primary Endpoint

: any stroke, MI, or death within 30 days plus subsequent ipsilateral stroke

Follow-up was up to 4 years (median 2.5)

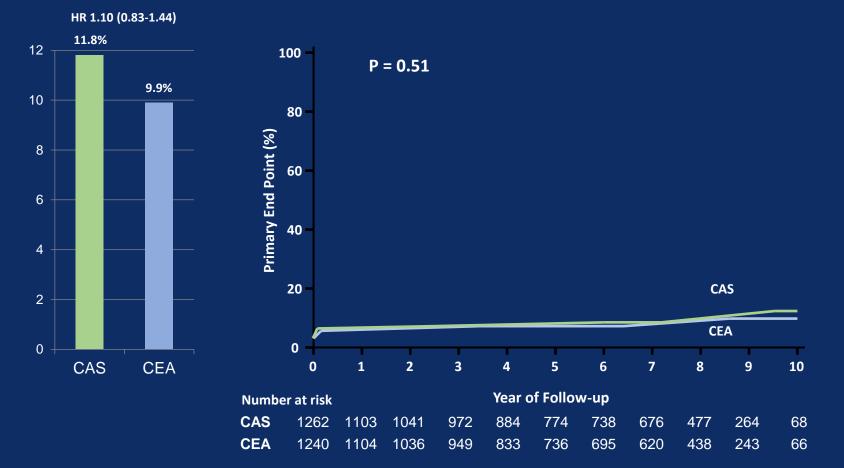
Int J Stroke. 2010;5:40–46

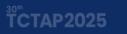

4-Year Outcomes of the CREST

Primary Endpoint :

any stroke, MI, or death within 30 days + subsequent ipsilateral stroke

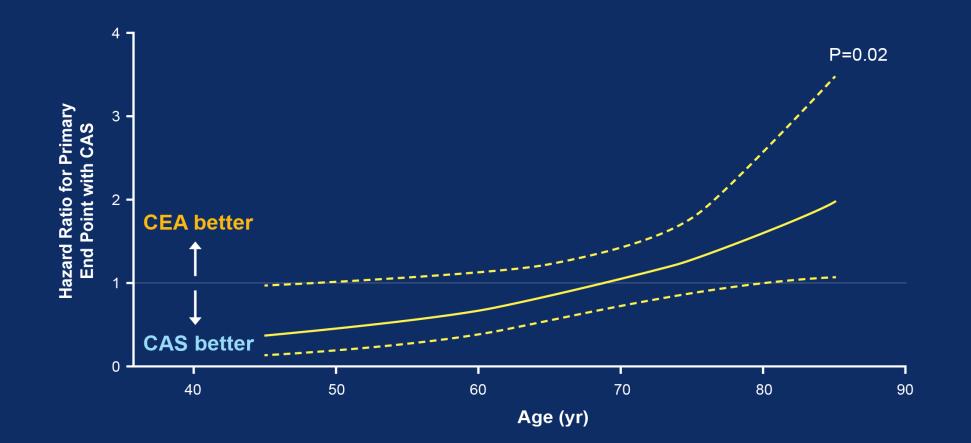
N Engl J Med 2010; 363(1):11-23




10-Year Outcomes of the CREST

Primary Endpoint :

any stroke, MI, or death during the periprocedural period + ipsilateral stroke



N Engl J Med 2016; 374(11):1021-1031

Hazard Ratio for Primary Endpoint

4-Year Outcomes of the CREST

N Engl J Med 2010; 363(1):11-23

CREST Trial

Periprocedural (30-day) Complications

	CEA	CAS	HR (95% CI)	P Value
Stroke	2.3%	4.1%	1.79 (1.14-2.82)	0.01
Major	0.8%	1.4%		
Minor	1.4%	2.7%		
MI	2.3%	1.1%	0.50 (0.26-0.94)	0.03
CN Palsies	4.8%	0.3%	0.07 (0.02-0.18)	<0.0001

Overall death rate : 0.6%

Lowest reported in any randomized trials

Recurrent event rates 2.0% for CAS versus 2.4% for CEA



Periprocedural (30-day) Complications

	CEA	CAS	HR (95% CI)	P Value
Stroke	5.6%	6.9%	0.99 (0.64-1.52)	0.96
Major	1.1%	2.7%	1.91 (0.71-5.10)	0.20
Minor	4.5%	4.2%	0.83 (0.51-1.34)	0.44

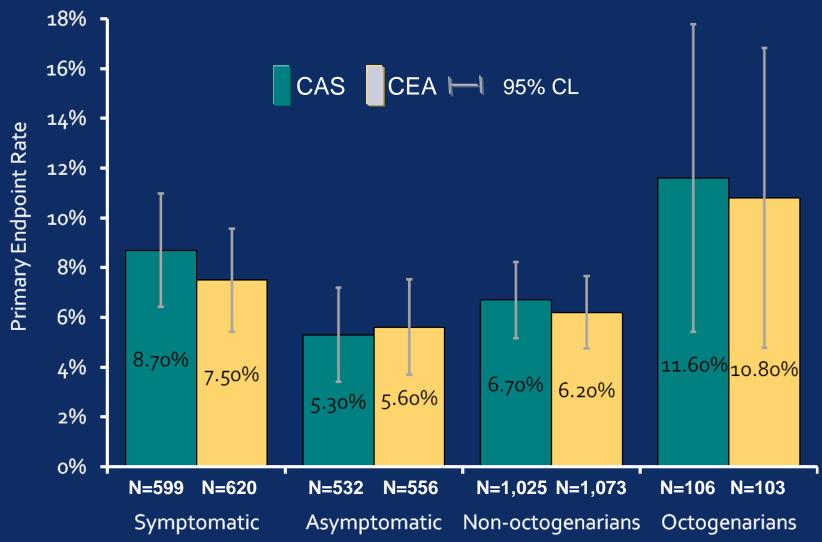
Safety of Stenting and CEA

by Symptomatic Status in the CREST

1,181 asymptomatic & 1,321 symptomatic pts

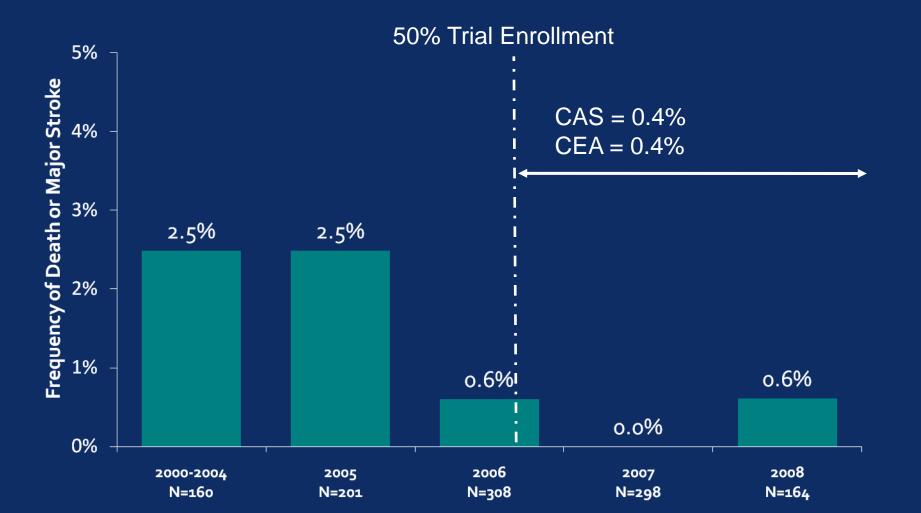
Primary endpoint

- periprocedural stroke, MI or death


	CAS	CEA	HR (95% CI)	P Value
Asymptomatic	3.5%	3.6%	1.02 (0.55-1.86)	0.96
Symptomatic	6.7%	5.4%	1.26 (0.81-1.96)	0.30

Stroke 2011; 42(3): 675-80

Primary Composite Endpoint


by Symptomatic or Octogenarian Statusin the CREST

ТСТАР2025

Death or Major Stroke Rates Decrease for CAS over the Period of CREST Enrollment

ТСТАР2025

CVRF

Stroke and Death

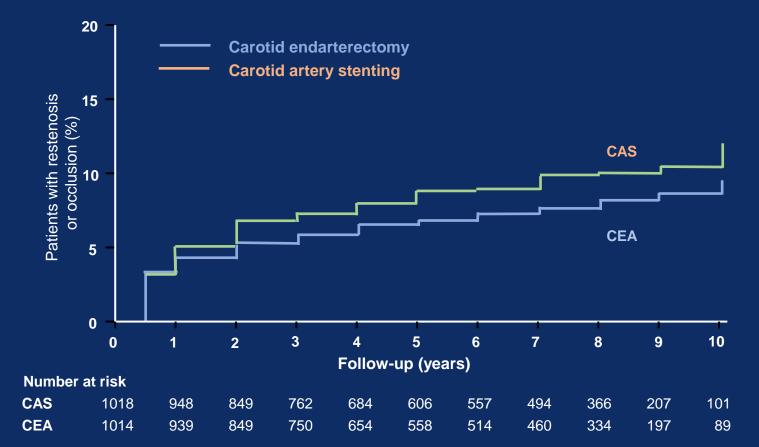
by Age in the CREST

	Stroke Rate
<60 years (n=120)	2 (1.7%)
60-69 years (n=229)	3 (1.3%)
70-79 years (n=301)	16 (5.3%)
>80 years (n=99)	12 (12.1)%

Restenosis After Carotid Artery Stenting and Endarterectomy in the CREST trial

Pts who received assigned treatment ≤ 30 days after randomization and had core lab-reviewed duplex ultrasound (n = 1,086 CAS, n = 1,105 CEA)

- Restenosis occurred in 5.8% of both CAS and CEA patients at 2 years
- Repeat revascularization rates also were similar at 1.8% of the CAS group and 2.1% of the CEA group
- Multivariable analysis found that female sex, diabetes, and dyslipidemia independently predicted restenosis


Implications: Carotid stenting and surgery produce equivalent levels of restenosis out to 2 years after intervention.

Lancet Neurol 2012; 11: 755-63

Restenosis After Carotid Artery Stenting and Endarterectomy in the CREST trial

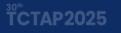
HR (95% CI): 1.24 (0.91 – 1.70)

adjusted for age, sex, and symptomatic status

N Engl J Med 2016; 374(11):1021-1031

Frequency of restenosis after CAS or CEA

Trials		Diagnostic criteria	No. of pts		Pts with restenosis		P Value
	restenosis criteria		CAS	CEA	CAS	CEA	
CAVATAS	Restenosis ≥70% or occlusion	PSV>2.1 m/s	50	213	16.6% in 5 years	10.5% in 5 years	Not reported
SAPPHIRE	Restenosis ≥50%(symptomatic) and ≥80% (asymptomatic)	Repeat revascularization procedure	143	117	3% in 3 years	7.1% in 3 years	0.08
EVA-3S	Restenosis ≥70% or occlusion	PSV>2.1 m/s (CEA) and ≥3.0 m/sec (CAS)	242	265	3.3% in 3 years	2.8% in 3 years	NS
CREST	Restenosis ≥70% or occlusion	PSV ≥3.0 m/sec	1086	1105	6.0% in 2 years	6.3% in 2 years	0.58
SPACE	Restenosis ≥70% or occlusion	Not specified	541	522	11.1% in 2 years	4.6% in 2 years	0.0007


CEA vs. CAS : meta-analysis 13 RCTs included Long-Term Outcomes (1-year)

Study Study % ID Odds Ratio Weight ID Odds Ratio Weight (95% CI) (95% CI) 0.31 (0.01.7.90) 0.34 LEXINGTON I (2001) 0.31 (0.01, 7.90) 0.28 LEXINGTON I (2001) 3.73 (1.18, 11.84) 2.19 0.98 (0.02, 50.37) 0.23 WALLSTENT (2001) LEXINGTON II (2004) 0.98 (0.02, 50.37) 0.19 LEXINGTON II (2004) BACASS (2008) 0.30 (0.01, 8.33) 0.32 0.44 (0.03, 5.88) 0.44 **BACASS** (2008) EVA-3S (2008) 1.96 (1.11, 3.48) 10.68 EVA-3S (2008) 1.41 (0.94, 2.11) 17.84 SAPPHIRE (2008) 1.00 (0.47, 2.12) 6.24 SAPPHIRE (2008) 0.97 (0.59, 1.59) 12.03 SPACE (2008) 1.10 (0.75, 1.60) 24.77 SPACE (2008) 1.11 (0.75, 1.63) 19.66 10.14 (0.53, 194.30) 0.40 Steinbauer et al (2008) Steinbauer et al (2008) 1.03 (0.41, 2.59) 3.46 CAVATAS (2009) 1.56 (1.02, 2.37) 19.84 CAVATAS (2009) 1.17 (0.82, 1.68) 22.23 CREST (2010) 1.41 (1.04, 1.92) 37.18 CREST (2010) 1.50 (1.04, 2.17) 21.68 \diamond Overall (I-squared-0.0%, p=0.508) 1.37 (1.13, 1.65), 100.00 ⊘ Overall (I-squared-0.0%, p=0.554) 1.25 (1.05, 1.48), 100.00 p=0.001 p=0.01 0.04 0.04 25 favors CAS favors CEA favors CAS favors CEA

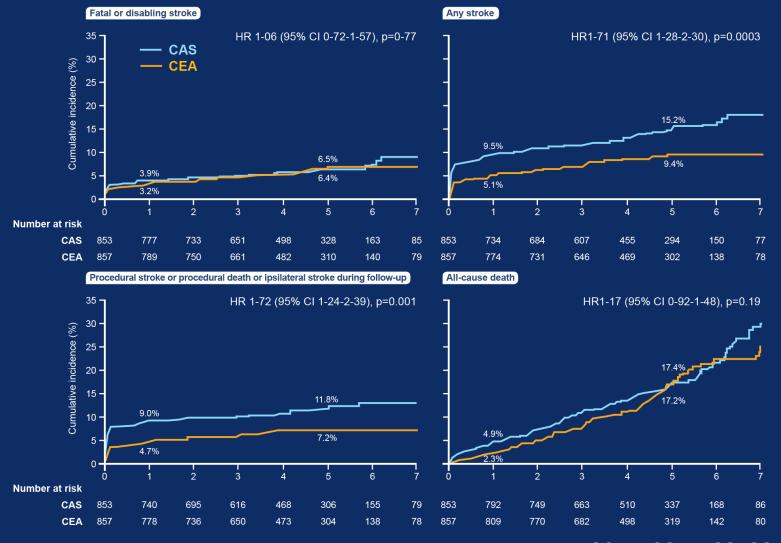
Stroke

Stroke 2011; 42(3): 687-92

Death or Stroke

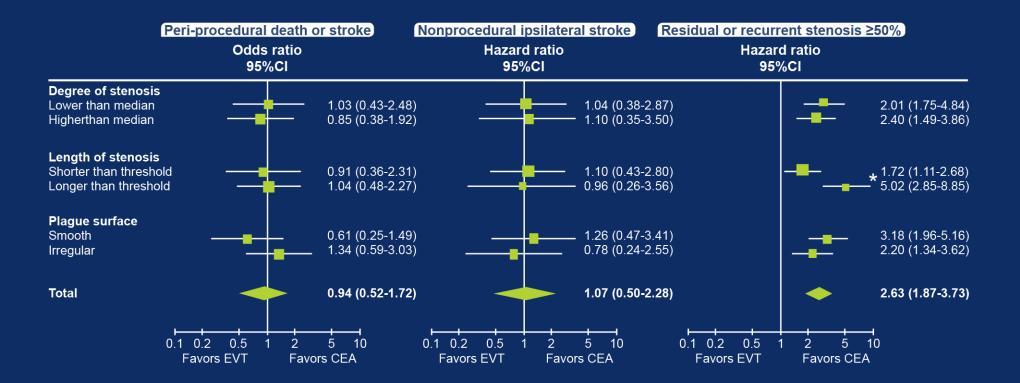
Safety Signal - Periprocedural Stroke or Death

Meta-Analysis of RCTs Comparing CEA and CAS


Study	CAS n/N	CEA n/N	OR (fixed) 95%Cl	Weight %	OR (fixed) 95%Cl
01 Symptomatic	Patients:				
Lecester	5/7	0/10	· · · · · · · · · · · · · · · · · · ·	──→ 0.13	46.20 [1.87, 1141.18]
Lexington 1	1/53	1/51	·	→ 0.96	0.96 [0.06, 15.79]
Wallstent	13/107	5/112	_	— 4.83	2.71 [0.95, 7.72]
EVA-3S	25/261	10/259	_	- 9.27	2.64 [1.24, 5.61]
SPACE	46/599	38/584		36.30	1.20 [0.77, 1.87]
BACASS	0/10	1/10	· · · · · · · · · · · · · · · · · · ·	1.46	0.30 [0.01, 8.33]
CREST	55/1262	29/1240		20.40	1.92 [1.12, 3.29]
ICSS	61/828	28/821		26.58	2.29 [1.45, 3.62]
Total (95%CI)	2677	2641		100.00	1.89 [1.48, 2.41]
Total events: 192	(CAS), 104 (C	EA)			
Test for heteroger	neity: x²=11.16,	df=7 (P=0.13		Driven by	
Test for overall eff	ect: Z=5.10 (P	<0.00001)	non	-disabling stroke	
02 Asymptomatic	c Patients:				
Lexington 2	0/43	0/42			Not estimable
CREST	15/594	8/587		100.00	1.88 [0.79, 4.46]
Total (95%CI)	637	629		100.00	1.88 [0.79, 4.46]
Total events: 15 (0	CAS), 8 (CEA)				
Test for heteroger	neity: not applic	able			
Test for overall eff	ect: Z=1.42 (P	=0.15)			
			0.1 0.2 0.5 1 2 Favors DES Favors c	5 10 ontrol	

Ann Vasc Surg 2012;26:576-90

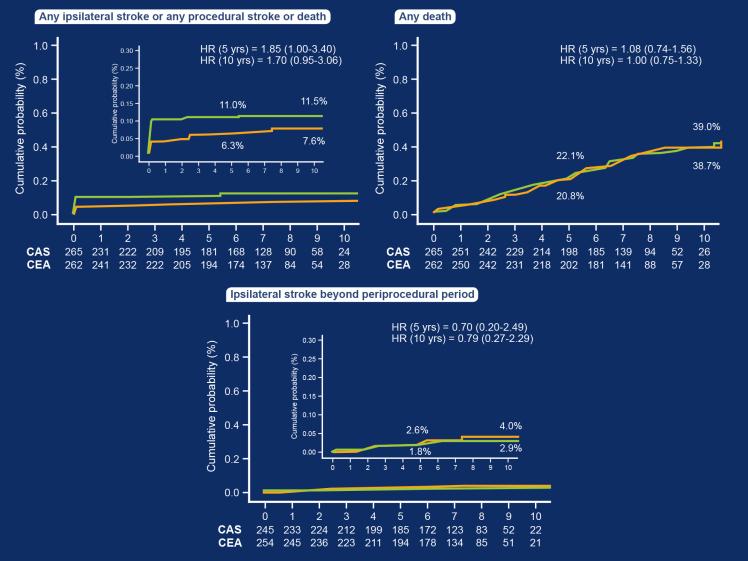
Long-term outcomes after stenting versus endarterectomy for treatment of symptomatic carotid stenosis: the International Carotid Stenting Study (ICSS) randomized trial


тстар2025

Lancet 2015; 385: 529–38


Length of carotid stenosis predicts peri-procedural stroke or death and restenosis

in patients randomized to endovascular treatment or endarterectomy


EVT, endovascular treatment; CEA, endarterectomy

Int J Stroke 2014 Apr;9(3):297-305

Endarterectomy Versus Angioplasty in Patients With Symptomatic Severe Carotid Stenosis Trial (EVA3S)

Stroke. 2014;45:2750-2756

Carotid Stent

Carotid Stent Design

We need to make the first 30 days safer

CAS related neurologic events are mutlifactorial

- Arch and great vessel anatomy
- Lesion morphology
- Operator experience
- Quality of embolic protection
- Carotid stent attributes

Carotid Stent Design

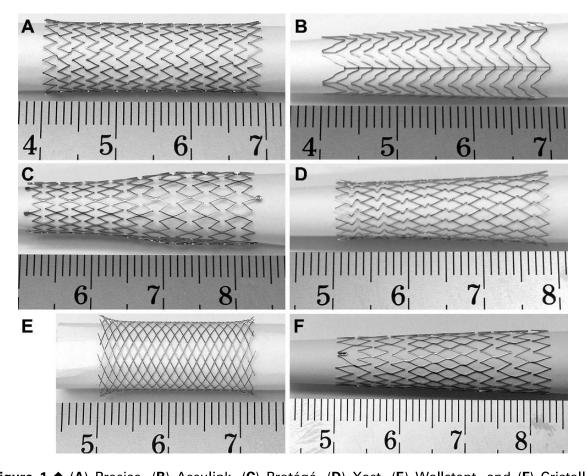


Figure 1 ♦ (A) Precise, (B) Acculink, (C) Protégé, (D) Xact, (E) Wallstent, and (F) Cristallo Ideale.

J Endovasc Ther 2009;16:168

What is the impact of the stent design?

PROTÉGÉ[®] RX Carotid Stent (ev3)

SMART (Cordis)


WallStent (Boston Scientific)

ACCULINK (Abbott)

XACT (Abbott)

Closed vs. Open Cell Stenting

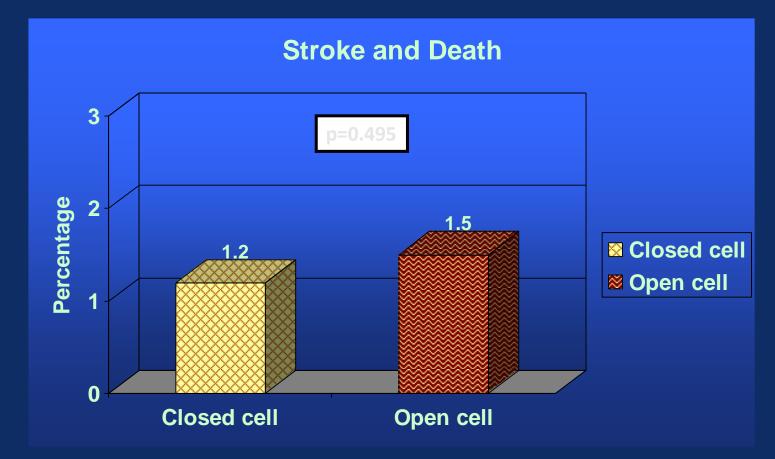
Closed Cell Stent

- Vessel wall scaffolding
- Plaque stabilization

Open Cell Stent

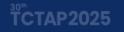
- Flexibility
- Conformable to vessel anatomy

Carotid Stent Design


Proximal	PROTÉGÉ [®] RX (Tapered, 8-6mm)	RX ACCULINK [™] (Tapered, 8-6 mm)	Xact® (Tapered, 8-6mm)	PRECISE [®] (Straight, 8 mm)	WALLSTENT [®] (Straight, 8 mm)
Pore Diam. (mm	1.12	1.10	1.00	1.12	0.92
Pore Size (mm2)	2.65	12.50	3.46	2.43	0.948
Cell Area (mm2)	7.19	12.50	3.46	7.39	0.948
Distal					
	PROTÉGÉ [®] RX (Tapered, 8-6 mm)	RX ACCULINK [™] (Tapered, 8-6mm)	[®] Xact [®] (Tapered, 8-6mm)	PRECISE [®] (Straight, 8 mm)	WALLSTENT [®] (Straight, 8 mm)
Pore Diam. (mm)	1.08	1.06	0.96	1.12	0.92
Pore Size (mm2) 🗖	1.80	10.78	2.23	2.43	0.948
Cell Area (mm2) 🗖	4.48	10.78	2.23	7.39	0.948

³⁰ TCTAP2025

Bersin TCT 2008



30-Day Stroke (As Defined By the Authors) / Death Rates (no TIAs)

Difference: 0.3% (95% CI–0.5% to 1.4%, p=0.495)

Eur J Vasc Endovasc Surg 2007;33:135e–141

Increased in Neurologic Events With Open Cell Stents SPACE Trial

Influence of Different Stent Types on OE Rate

Stent	Wallstent	Acculink	Precise
No. of patients	436	92	35
Pat. with OE	24	9	5
OE rate (95% CI)	5.5%(3.6-8.1%)	9.8%(4.6-17.8%)	14.3%(4.8-30.3%)

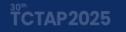
Combined OE rate: 11.0%(6.2-17.8%)

Stroke 2009;40:841

Increased in Delayed Neurologic Events With Open Cell Stents (1-30 days)

	Total population				
	Patients	All events	Post-procedural events		
Open cell	937	39	32		
Closed cell	2242	51	29		
Total	3179	90	61		
Open cell		4.2%	3.4%		
Closed cell		2.3%	(1.3%)		
Total	3179	2.8%	1.9%		

Eur J Vasc Endovasc Surg 2007;33:135

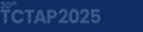


Increase in Neurologic Events With Open Cell Stents

Symptomatic patients

P-values for the test that event rates differ between stents

Population	Outcome	p-value
Total	All events Post-procedural events	0.018 0.002
Symptomatic	All events Post-procedural events	0.006 <0.0001
Asymptomatic	All events Post-procedural events	0.248 0.790


Stent Design Trumps Embolic Protection

30-Day Follow-Up	Protection Device (n = 145)	No Protection Device (n = 418)	P value
Ipsilateral Stroke or Death	8.3 %	6.5 %	0.40
Disabling Stroke or Death	5.5 %	4.5 %	0.64

30-Day Follow-Up	Closed-cell Stent (n = 436)	Open-cell Stent (n = 127)	P value
Ipsilateral Stroke or Death	5.6 %	11.0 % (OR 2.13; 95% Cl, 1.07-3.76)	0.029
Disabling Stroke or Death	5.5 %	4.5 %	0.64

* Closed-cell stent: the Wall stent (Boston Scientific) Open-cell stent: Precise (Cordis) / Acculink (Guidant)

Stroke. 2009;40:841-846

CAS Outcomes Tied To . . .

ANATOMY

- Difficult Arch
- CCA/ICA
 - Tortuosity
- Lesion anatomy

PATIENT

- Symptoms
- **Octogenarians**
- Cerebral Reserve

OPERATOR

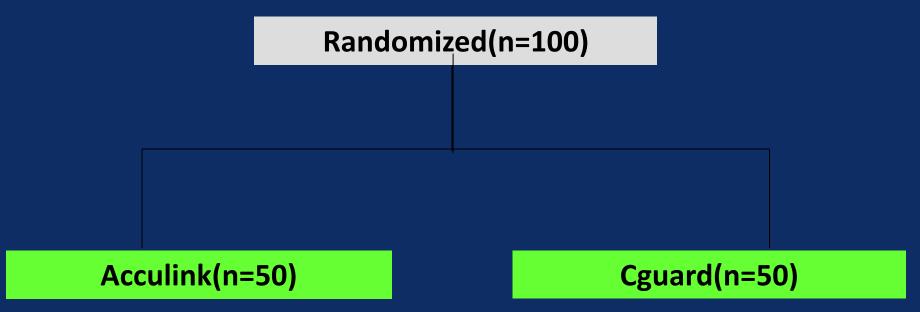
- Early learning curve
- Case selection
- Stubborn persistence

DEVICE SELECTION

- TECHNIQUE
- Embolic Protection
- Stent design
- Cerebral protection

CAS Benefits Persisting at 5 Years

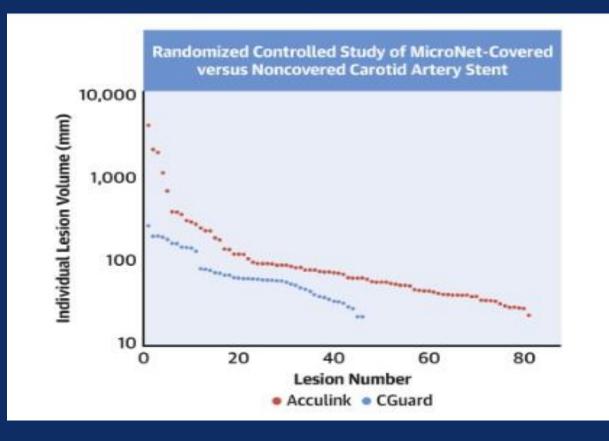
Single-center study of 2,202 carotid revascularization in either > 60% symptomatic or >70% asymptomatic

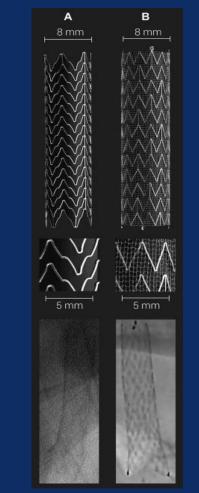

	CAS (n = 1,084)	CEA (n = 1,118)	P Value
30-Day Stroke or Death	2.8 %	2.0 %	0.27
30-Day Stroke/Death and 5- year ipsilateral Stroke	3.7%	4.7 %	0.4
Recurrent Stenosis (5-year)	3.4 %	5.8 %	0.7
Death (5-year)	18.0 %	12.3 %	0.05

J Am Coll Cardiol 2011;57:664-671

SIBERIA Trial

Procedure related ipsilateral cerebral embolism with a conventional (Acculink) vs MicroNet-covered (CGuard) stent in CAS Trial


Primary Endpoint


: Evaluation of the incidence and total volume of new cerebral lesions following carotid artery stenting

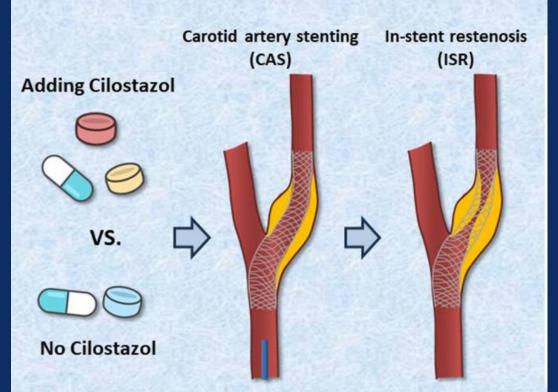
Karpenko A et al. JACC: cardiovascular interventions 2021; 14(21):2377-2387.

SIBERIA Trial

A:Acculink stent

B:MicroNetcovered CGuard stend

Conclusion: MicroNet-covered stent in relation to a conventional carotid stent significantly reduced periprocedural cerebral embolism in CAS

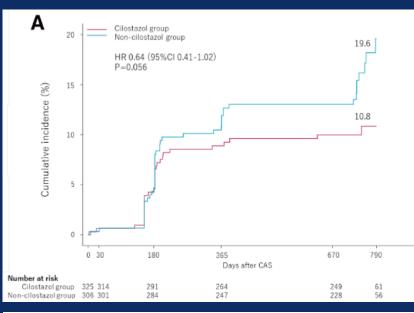

тстар2025

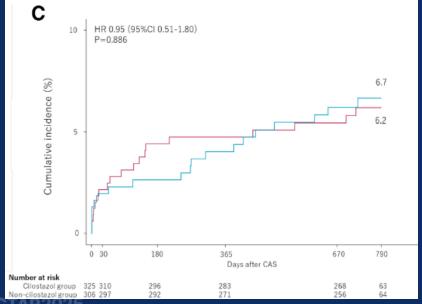
Karpenko A et al. JACC: cardiovascular interventions 2021; 14(21):2377-2387.

CAS-CARE Trial

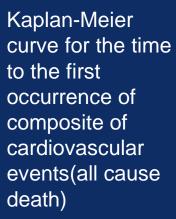
Evaluating the inhibitory effect of cilostazol addition on in stent restenosis(ISR) in patients treated with CAS

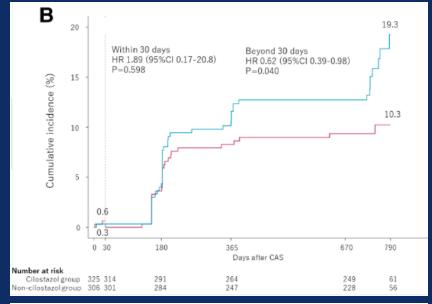
Primary outcome : Incidence of ISR within 2 years after CAS

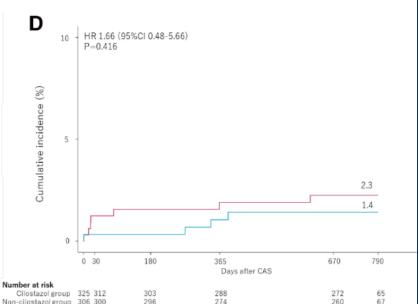

Secondary outcome


: Occurrence of cardiovascular events or any death and hemorrhagic events

Hiroshi Yamagami et al. Stroke 2024; 55(12); 2776-2385.



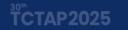

CAS-CARE Trial



Kaplan-Meier curve for the time to the first occurrence of ISR within 2 years after CAS

within 30 days

Incidence of ISR


Kaplan-Meier curve for the time to the first occurrence of composite of cardiovascular events(hemorrh agic stroke, systemic bleeding)

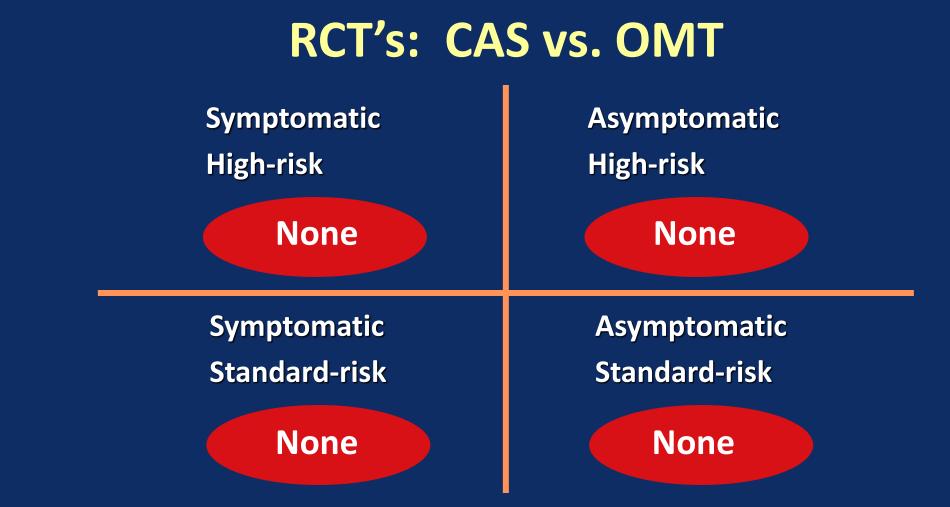
Hiroshi Yamagami et al. Stroke 2024; 55(12); 2776-

CAS-CARE Trial

Conclusion: The addition of cilostazol to other antiplatelet agents could contribute to the reduction of ISR in the chronic stage of patients who underwent CAS.

Hiroshi Yamagami et al. Stroke 2024; 55(12); 2776-2385.

Intensive Medical Therapy


CEA versus Medical Therapy

Trial	N	Stenosis	Follow-Up	End POINT	Medical (%)	CEA (%)	р	RRR (%)	ARR (%)	NNT
Symptomatic										
ECST(38)	3,018	≥80%		Major stroke or death	26.5	14.9	<0.001	44	11.6	8.6
NASCET(18)	659	≥70%	2 yrs	lpsilateral stroke	26	9	<0.001	65	17	5.9
VA 309(148)	189	>50%	1 Vr	lpsilateral stroke or TIA or surgical death	19.4	7.7	0.011	60	11.7	8.5
NASCET(19)	858	50-69%	5 yrs	Ipsilateral stroke	22.2	15.7	0.045	29	6.5	15.4
NASCET(19)	1,368	≤50%	5 yrs	Ipsilateral stroke	18.7	14.9	0.16	20	3.8	26.3
Asymptomatic										
ACAS(22)	1,662	>60%	5 Vre	lpsilateral stroke, surgical death	11	5.1	0.004	54	5.9	16.9
ACST(23)	3,120	≥60%	5 yrs	Any stroke	11.8	6.4	0.0001	46	5.4	18.5
VA(149)	444	≥50%	4 yrs	Ipsilateral stroke	9.4	4.7	<0.06	50	4.7	21.3

CEA was significantly superior to Medical therapy, irrespective of symptom

ACCF/SCAI/SVMB/SIR/ASITN 2007 Clinical Expert Consensus Document on Carotid Stenting J Am Coll Cardiol 2007;49:126–70

In absence of "head to head" trials vs. OMT, can only infer ability of CAS to prevent stroke based on:

- a) registry studies of CAS
- b) RCT's comparing it to CEA

Intensive Medical Therapy

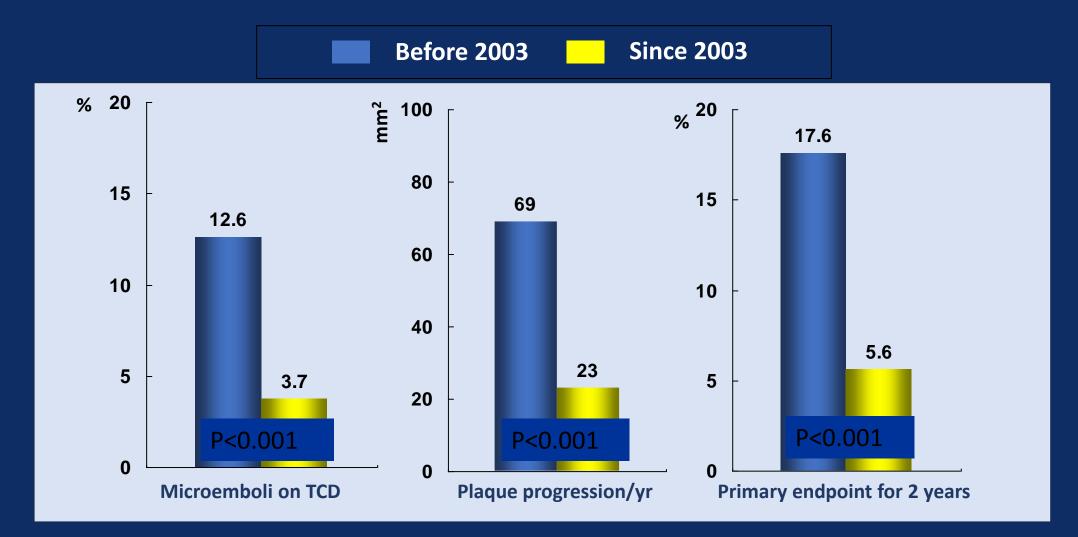
Contemporary Results of Carotid Endarterectomy for Asymptomatic Carotid Stenosis

- CEA for asymptomatic stenosis from the 2005,2006, and 2007 NSQIP database
- 5,009 CEA for asymptomatic patients
- 5-Year stroke risk after CEA : 3.8% (ACST : Asymptomatic Carotid Surgery Trial)

Average annual risk is 1%

- 0.8% for best medical management from the SMART : Second Manifestations of Arterial Disease Study trial
- → Stroke rates with CEA and best medical management for asymptomatic stenosis is similar

OMT with Events

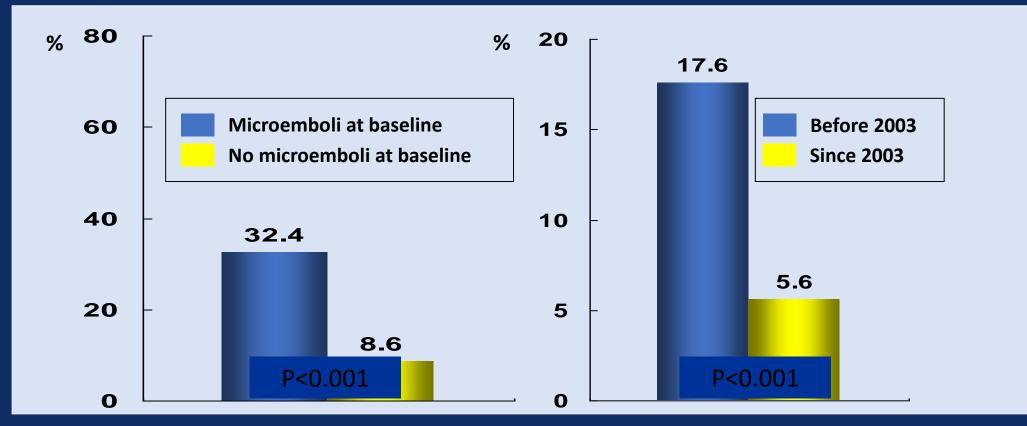

Intensive Medical Therapy

Effects of Intensive Medical Therapy on Micro-emboli and Cardiovascular Risk in Asymptomatic Carotid Stenosis

- Asymptomatic carotid stenosis (>60%)
- 199 patients, between Jan 2000 and Dec 2002
- 269 patients, between Jan 2003 and July 2007
 - (Intensive medical therapy)
- Outcome values
 - 1. Micro-emboli on TCD
 - 2. cardiovascular events
 - 3. rate of plaque progression
 - 4. baseline medical therapy, before and since 2003

Clinical Outcomes

Arch Neurol. 2010;67(2):180-186


Primary endpoint: stroke, death, MI, or carotid endarterectomy upon symptom development

OMT with Events

Clinical Outcomes for 2 years

Primary endpoint: stroke, death, MI, or carotid endarterectomy upon symptom development

- Less than 5% of Asymptomatic Carotid Stenosis patients can benefit from revascularization
- Only those with microemboli should be considered for endarterectomy or stenting

Arch Neurol. 2010;67(2):180-186

Medical Therapy for Carotid Artery Stenosis

- ASA 81 mg/d
 - No role for dual antiplatelet therapy for stroke prevention
- Antihypertensive Therapy
 - Angiotensin Converting Enzyme Inhibitor
 - Angiotensin Receptor Antagonist
- Lipid Lowering Therapy
 - LDL-Cholesterol <100 mg/dL
- Tobacco Cessation
- Glycemic Control (HbA1C <7.0%)</p>

2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline J Am Coll Cardiol 2011 Feb 22;57(8):1002-44

Optimal Medical Management of Asymptomatic Carotid Artery Stenosis

- Antithrombotic Therapy
 - ASA 75 325 mg/d
 - ASA + rivaroxaban 2.5mg bid
 - Clopidogrel 75mg OD or ticagrelor 90mg BID (if ASA-intolerant or allergic to ASA)
- Antihypertensive Therapy
 - Goal BP < 130/80
 - Prefer ACE inhibitor/ARB due to high prevalence of renovascular hypertension
 - May require combination therapy
- Glucose-lowering therapy
 - Goal HbA1c <7.0%
 - Metformin, GLP-1 agonist, SGLT-2 antagonist are preferred

Optimal Medical Management of Asymptomatic Carotid Artery Stenosis

- Lipid Lowering Therapy
 - LDL-Cholesterol <70 mg/dL (<54mg/dL for very high risk
 - High dose statin
 - Add ezetimibe or Add PCSK9 inhibitor
 - Consider icosapent ethyl (high-dose EPA) for fasting triglyceride 1.52-5.63 mmol/L
- Mediterranean diet
- Exercise
 - Moderate intensity 4 to 7 days per week, for a total of at least 150 min per week
- Smoking Cessation
- Consider referral for carotid revascularization
 - TCD + for microemboli, plaque ulcer, reduced cerebrovascular reserve, intraplaque hemorrhage, silent embolic infarcts on CT/MRI, plaque echolucency, large JBA, progression in severerity of stenosis

CEA vs. Intensive Medical Tx In Asymptomatic Stenosis

- Recently, intensive medical therapy may reduce event rate, compared with old, conventional medical therapy.
- The randomized, prospective trials comparing revascularization and best medical management for asymptomatic stenosis (SPACE 2, TACIT, ECST-2) will answer those issues

(TACIT : Transatlantic Asymptomatic Carotid Intervention Trial, optimal medical therapy alone, OMT plus stenting and OMT plus CEA in asymptomatic patients)

SPACE-2 Trial

- Prospective, randomized, controlled, multicenter trial
- Three parallel groups: Best medical treatment (BMT) (20%, n=540) CAS + BMT (40%, n=1550) CEA + BMT (40%, n=1550)
- About 100 certified centers
- N=3.640 patients with a follow-up of 5 years (duration 8-9 yrs)
- Funding by the German Ministry for Education and Research (BMBF, about € 4 Mi)

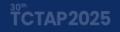
SPACE-2 Trial

- The three-arm study design was amended to become two parallel randomized studies (July 2013) because of slow patient recruitment
 - BMT alone vs. CEA plus BMT
 - BMT alone vs. CAS plus BMT
- Trial recruitment ceased after recruiting 513 patients over a 5 year period (2014) despite of the change in study design(2013)

- CEA vs. BMT (n = 203); CAS vs. BMT (n = 197), and BMT alone (n = 113)

 Stroke and death rates (95% CI) within the first 30 days after undergoing CEA or CAS.

	CEA (<i>n</i> = 203)	CAS (<i>n</i> = 197)
Death within 30 days	0/203 (0%; 0.00–1.8%)	0/197 (0%; 0.00–1.86%)
Combined stroke and death rate within 30 days	4/203 (1.97%; 0.54%–4.97%)	5/197 (2.54; 0.83%–5.82%)


Eur J Vasc Endovasc Surg. 2016 51(6):761-5.

Medical Treatment for Asymptomatic Carotid Stenosis

Study	Reference	Patients	PSV	Details
SMART (>3000)	Goessens Stroke 2007	96 with <u>></u> 70% stenosis	150cm/s	Only 96 pts had PSV <u>></u> 210, 7% had carotid repair
OxVasc (>90,000)	Marquardt Stroke 2010	32 with <u>></u> 70%stenosis	150cm/s	Vascular death in 7.7%
ASED	Abbott Stroke 2005	202 with <u>></u> 50% stenosis	150cm/s	TCD

How To Treat Carotid Disease?

- First and always....maximize medical therapy
 - Antiplatelet Therapy
 - Antihypertensive Therapy
 - Lipid Lowering Therapy
 - Aggressive Glycemic Control
- Revascularization
 - Standard Risk Asymptomatic?
 - CEA = CAS (CREST)
 - High Risk Asymptomatic?
 - CEA \leq CAS (SAPPHIRE)
 - Standard Risk Symptomatic?
 - CEA \geq CAS (ICSS, CREST, EVA3S, SPACE1)
 - High Risk Symptomatic?
 - CEA \geq CAS

Indications for carotid artery revascularization

Indication level	Symptomatic stenosis	Asymptomatic stenosis
Proven	 70-99% stenosis Peri-procedural complication risk <6% 	 > 80% stenosis Peri-procedural complication risk <3% Life expectancy > 5yrs
Acceptable	 50-69% stenosis Peri-procedural complication risk <6% 	 > 60% stenosis Peri-procedural complication risk <3% Planned CABG
Unacceptable	 <29% stenosis, or Peri-procedural complication risk > 6% 	 < 60% stenosis or Peri-procedural complication risk >3% No indication for CABG

Circulation 2006;113:2021-2030

Carotid Disease Guideline 2011

- 1. CAS is a safe and effective alternative to CEA in symptomatic patients with > 50% stenosis and low to average surgical risk.
- 2. Prophylactic CAS might be considered in highly selected patients with asymptomatic carotid stenosis (minimum 60% by angiography, 70% by validated Doppler ultrasound), but its effectiveness compared with medical therapy alone in this situation is not well established.
- 3. Selection of asymptomatic patients for carotid revascularization should be guided by an assessment of co-morbid conditions, life expectancy, and other individual factors and should include a thorough discussion of the risks and benefits of the procedure with an understanding of patient preferences.
- 4. It is reasonable to choose CEA over CAS when revascularization is indicated in older patients, "particularly when arterial patho-anatomy is unfavorable for endovascular intervention."
- 5. It is reasonable to choose CAS over CEA when revascularization is indicated in patients with neck anatomy unfavorable for surgery

2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline J Am Coll Cardiol 2011 Feb 22;57(8):1002-44

Class I (Benefit >>>Risk)

- >70% stenosis by non-invasive testing or >50% by angiography
 - Symptomatic
 - TIA or CVA within 6 months should undergo CEA
 - If at low risk for endovascular intervention CAS can be
 - an alternative to CEA
 - Asymptomatic
 - Should be guided by assessment of comorbid conditions,
 - life expectancy and individual risk vs. benefit

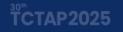
Class IIa (Benefit >>Risk)

>70% stenosis of ICA and asymptomatic

- CEA \rightarrow low risk for perioperative CVA, MI or death
- CEA over CAS→ Poor arterial pathoanatomy for endovascular intervention
- CAS over CEA \rightarrow neck anatomy unfavorable for surgery
- >70% stenosis of ICA and TIA/CVA within 2 weeks
 - Favors early revascularization if no contraindications (CEA or CAS)

Class IIb (Benefit = Risk)

- >70% by Doppler or >60% stenosis by angiography
 - Prophylactic CAS
 - CEA or CAS in asymptomatic or symptomatic patients at high risk of complications for revascularization
 - Effective is not well established (vs. medical therapy)


Class III (No Benefit)

<50% stenosis</p>

- Revascularization <u>not</u> recommended
- Medical Therapy
- Risk Factor Modification
- Annual Evaluation

Chronic Total Occlusion (CTO)

- Revascularization not recommended
- Severe Disability Cause by CVA
 - Revascularization <u>not</u> recommended

