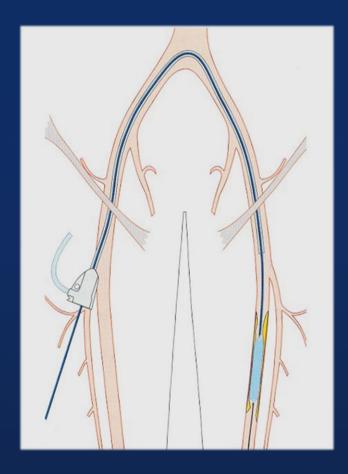

Femoropopliteal Intervention

Access for Treatment of SFA Antegrade Access



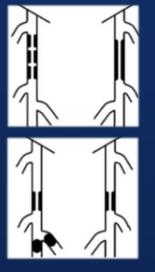
- Distal lesions, very calcified lesions
- Better steerability and pushability
- Shorter devices and wires

Access for Treatment of SFA Cross-over technique

- Easier punture
- Less complications
- Accessability of very proximal SFA lesions
- Compression bandage on the contralateral leg

Classification of femoropopliteal lesions TASC

- Type A
 Single stenosis ≤ 10cm
 Single occlusion ≤5cm



Endovascular

- Multiple lesions, Each \leq 5cm
- Single stenosis or occlusions \leq 15cm, Not involving the infrageniculate popliteal artery

Type B

- Single or multiple lesions in the Absence of continuous tibial vessels to improve inflow for a distal bypass
- Heavily calcified occlusion ≤ 5 cm
- Single popliteal stenosis

Endovascular

Classification of femoropopliteal lesions TASC

- Multiple stenosis or occlusions totaling > 15cm with or without heavy calcification
- Recurrent stenosis or occlusions
 that need treatment after two
 endovascular interventions

Endovascular or surgery depending on the risk benefit

- Chronic total occlusions of CFA or SFA (> 20cm, involving the popliteal artery)
- Type D

Type C

• Chronic total occlusion of popliteal artery and proximal trifurcation vessels

Surgery

Treatment strategies

Balloon angioplasty (PTA)

Stainless steel stent

Nitinol stent

Graft stent

Drug-eluting balloon (Paclitaxel)

Drug-eluting stent (Everolimus, Sirolimus or Paclitaxel)

Bio-degradable stent

Cryoplasty / Laser angioplasty

Atherectomy

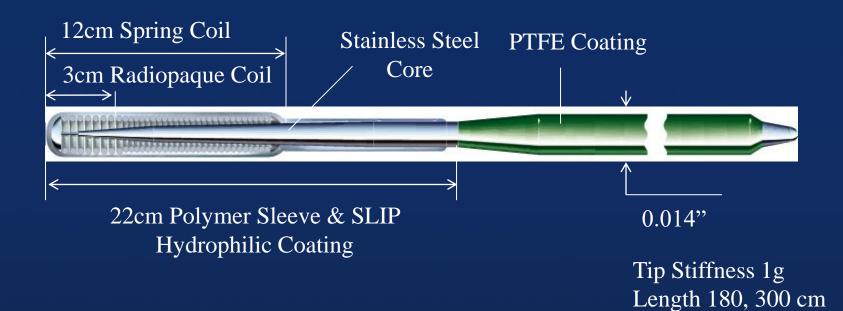
Factors Influencing the Patency of SFA Interventions

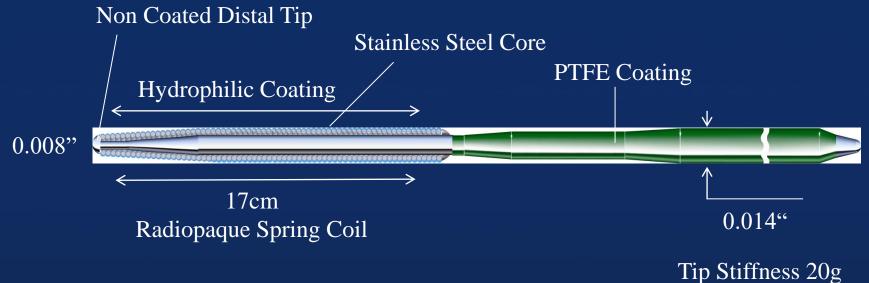
Positive	Negative	Noncontributory		
< 2 cm lesions	Occlusions	Age		
Non-calcified	Segments stented > 10 cm	Race		
> 3.5 mm diameter vessel	> 30% residual stenosis			
Non-smokers	Poor tibial run-off			
Low CRP	Creatinine > 1.3			

Guidewires for PTA

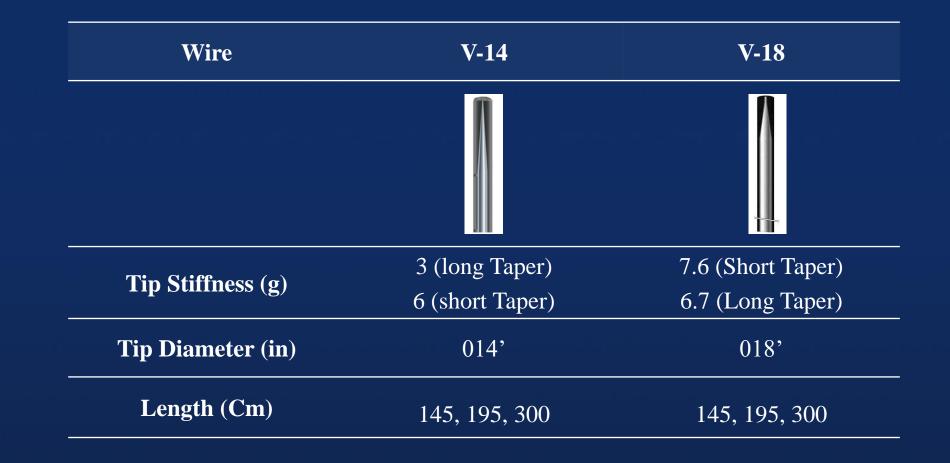
	Abbott	Asahi	Boston	Cook	Covidien
014	Command <u>Command ES</u>	Regalia XS <u>Astato XS</u>	Journey V-14 <u>Victory 014</u>	HydroST <u>Approach CTO</u>	Nitrex
018	Connect Connect Flex Connect 250T	<u>Treasure 12</u> Treasure Floppy <u>Astato 30</u>	<u>V-18</u> <u>Victory 018</u>		

**Underline; CTO wires*

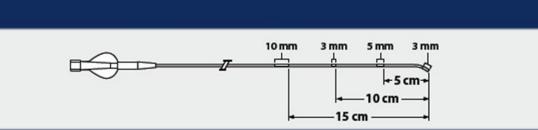

Guidewire Command


Guidewire Regalia

Guidewire Astato 20



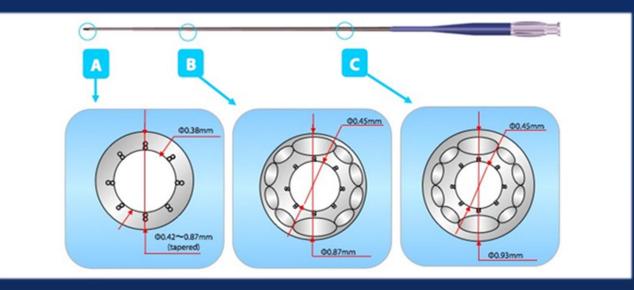
Guidewire V-14, V-18


Support Catheter CXI

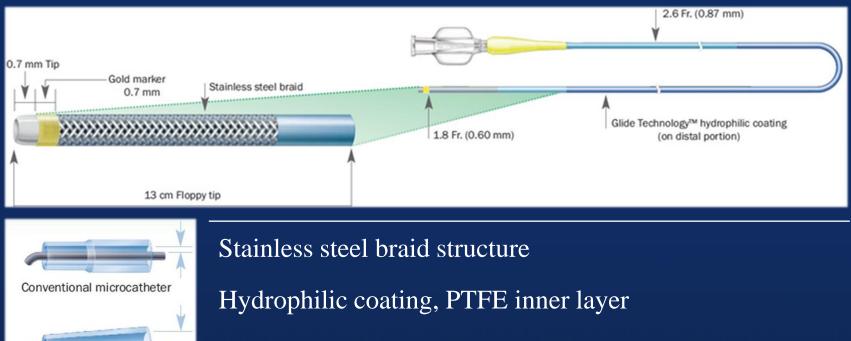
Braided Technology Pushability with braided stainless steel shaft Hydrophilic coated distal part Tapered tip(0.018") delivers great support to wire Diameter / length: 2.6Fr / 90 and 150cm

Tip Configuration: straight or angled

Tip Options



Support Catheter Corsair

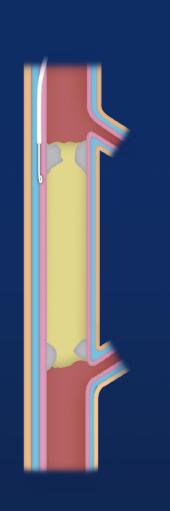


Pushability, Trackability, Support – SHINKA - Shaft Lubricity - Hydrophilic Polymer Coating, PTFE Inner Layer Maneuverability - Tapered Soft tip and Tungsten Braiding Diameter / length: 2.6Fr / 135 and 150cm

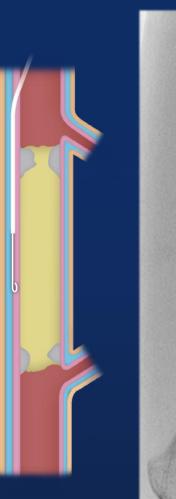
Support Catheter FineCross

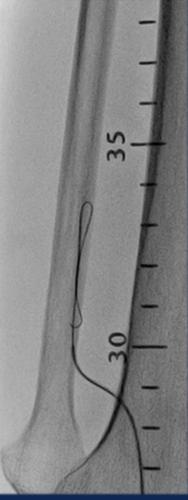
Catheter length 130 cm / 150 cm

Diameter / length: 2.6Fr / 130 and 150cm

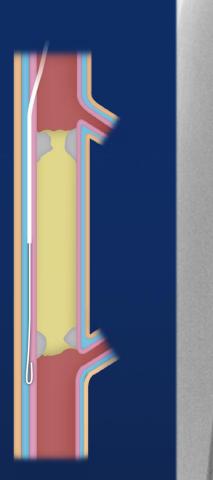


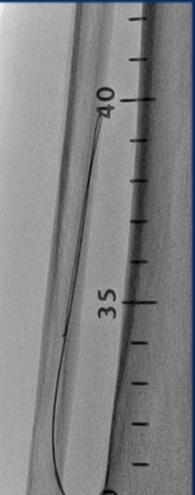
FineCross MG

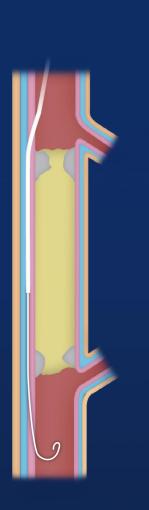

Tapers from 2.6 Fr. to 1.8 Fr. over entire catheter length

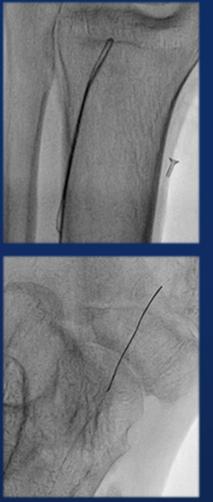


Subintimal Approach









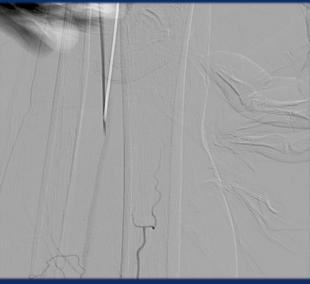
Subintimal Approach

Re-entry Catheter

Re-entry catheter	Enter true lumen from subintimal space
Outback	Premounted needle on a 6 Fr catheter with fluoroscopic orientation
Pioneer	IVUS guided, premounted needle, orient needle to 12 o'clock, color flow in true lumen
Enteer	Flat balloon orients itself in subintimal space and points needle toward true lumen, 0.018 compatible
Offroad	Conical balloon 5.4 mm, when inflated points toward true lumen, microcatheter lancet

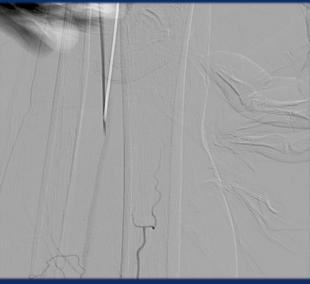
Schneider et al. J Vasc Surg 2013


Re-entry Catheter

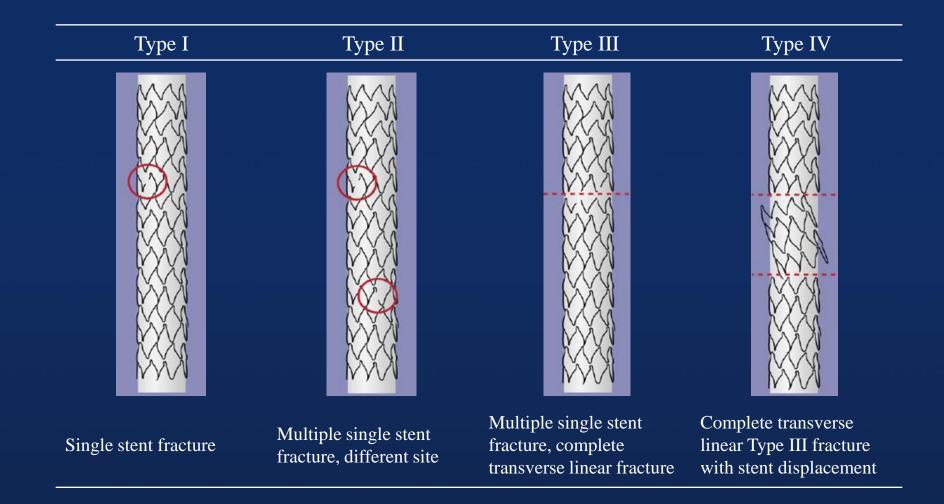

Pioneer	Outback					
8F compatible 0.014" wire (2) IVUS-guided (Volcano)	6F compatible 0.014" wire (1 or 2) Fluoro-guided					

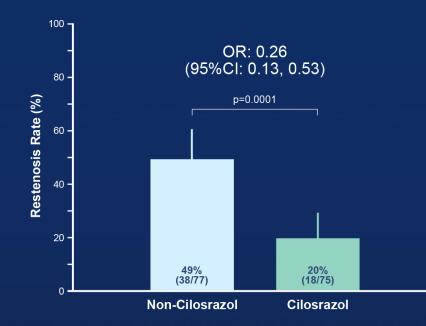
Retrograde Puncture Tibial Access





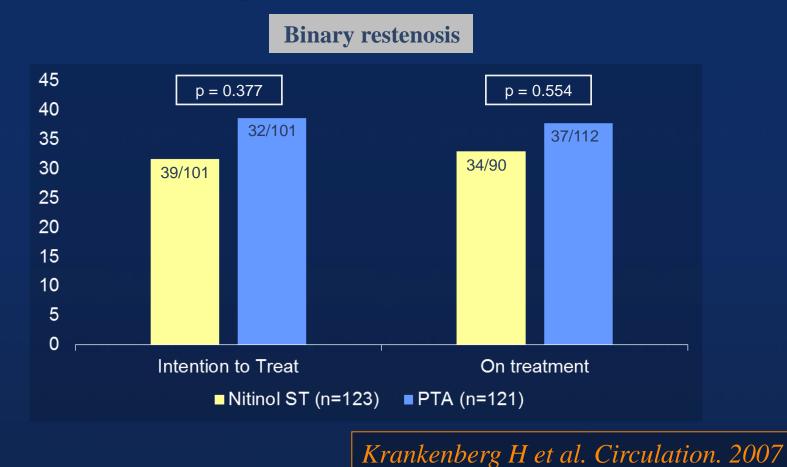
Retrograde Puncture Tibial Access




Stent Fracture

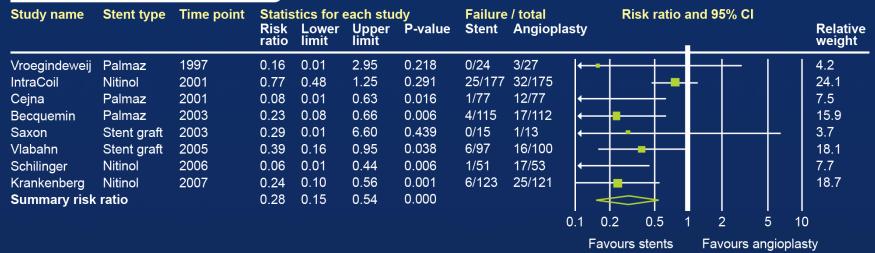
STOP-IC Aspirin vs. Aspirin + Cilostazol After Endovascular Therapy; Randomized Study 12 Months Results of 77 without Cilostazol vs. 75 with Cilostazol

Conclusion Cilostazol reduced angiographic restenosis after percutaneous transluminal angioplasty with provisional nitinol stenting for femoropopliteal lesions.


Iida O et al. Circulation. 2013

FAST Nitonol Stent vs. PTA SFA Lesions up to 10 cm

Lesion length 45mm ST vs. 44mm PTA



ŤCTAP2024

Routine vs. Provisional Stenting Meta-Analysis of Randomized Trials Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Immediate technical failure

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

Kasapis C et al. Eur Heart J. 2009

Routine vs. Provisional Stenting Meta-Analysis of Randomized Trials Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Restenosis

Study name	Stent type	Time point	Statistics for each study Risk Lower Upper P-value ratio limit limit			Failure / total Stent Angioplasty			Risk ratio and 95% Cl			Relative weight	
Vroegindeweij	Palmaz	1997	1.45	0.64	3.29	0.378	9/24	7/27	1			5.*	1
Zdanowski	Strecker	1999	0.86	0.63	1.16	0.321	10/12	8/8		_ _	-	14	4.3
IntraCoil	Nitinol	2001	1.22	0.84	1.78	0.288	40/97	31/92				12	2.6
Cejna	Palmaz	2001	0.98	0.66	1.46	0.929	26/56	26/55		-	↓ ↓	12	2.0
Grimm	Palmaz	2001	1.23	0.46	3.26	0.682	8/30	5/23				3.9	9
Becquemin	Palmaz	2003	1.07	0.67	1.72	0.769	26/75	21/65		-	- 	10).3
Saxon	Stent graft	2003	0.17	0.05	0.65	0.009	2/15	10/13	←			2.3	3
Vlabahn	Stent graft	2005	0.58	0.43	0.80	0.001	34/97	60/100				14	4.1
Schilinger	Nitinol	2006	0.66	0.46	0.95	0.025	21/46	36/52			-	12	2.8
Krankenberg	Nitinol	2007	0.82	0.56	1.20	0.304	32/101	39/101			-	12	2.5
Summary risk	ratio		0.85	0.69	1.06	0.146				<			
								C).1 0.2	0.5	1 2	5 10	
									Favou	irs stents	Favours a	angioplasty	

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

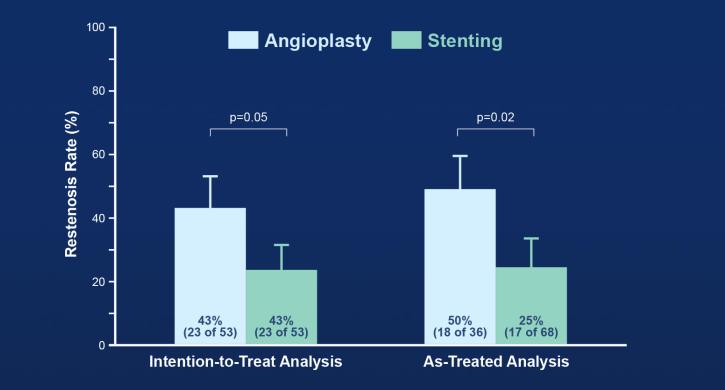
Kasapis C et al. Eur Heart J. 2009

Routine vs. Provisional Stenting Meta-Analysis of Randomized Trials Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Target vessel revascularization

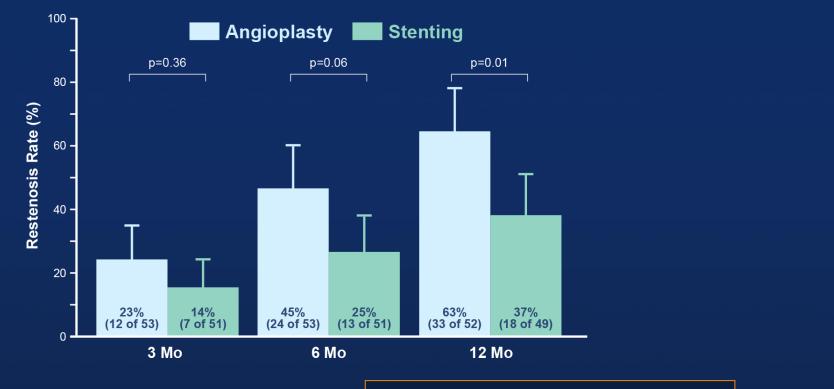
Study name	Stent type	pe Time point Statistics for each study Failure / total Ri Risk Lower Upper P-value Stent Angioplasty ratio limit limit		Risk ratio a	Relative weight							
							0// 5				<u> </u>	
Zdanowski	Strecker	1999	1.13	0.18	7.09	0.894	2/15	2/17				- 1.5
IntraCoil	Nitinol	2001	0.93	0.56	1.54	0.771	24/146	25/141				17.2
Cejna	Palmaz	2001	1.75	1.03	2.96	0.037	28/77	16/77				16.2
Grimm	Palmaz	2001	0.88	0.37	2.06	0.762	8/30	7/23				6.6
Becquemin	Palmaz	2003	1.51	0.68	3.36	0.306	14/115	9/112				7.6
Saxon	Stent graft	2003	0.87	0.14	5.32	0.877	2/15	2/13		•		1.5
Vlabahn	Stent graft	2005	0.93	0.54	1.62	0.805	19/97	21/100		- I		14.8
Schilinger	Nitinol	2006	0.69	0.44	1.08	0.104	17/46	28/52				21.0
Krankenberg	Nitinol	2007	0.82	0.46	1.47	0.497	17/114	21/115			-	13.5
Summary risk	(ratio		0.98	0.78	1.23	0.889				<		
									0.1 0.2	0.5 ´	125	10
									Favou	rs stents	Favours angi	oplasty

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.


Kasapis C et al. Eur Heart J. 2009

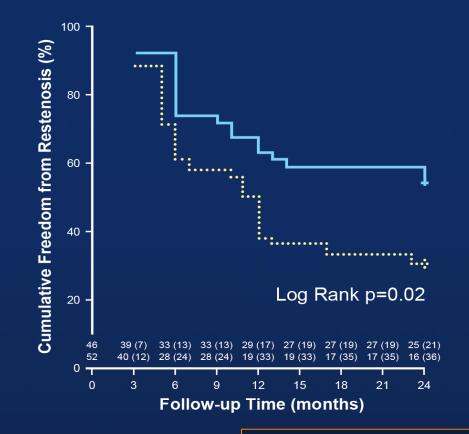
Nitinol Stent vs. PTA Randomized Intermittent Claudication and Chronic CLI of SFA

Lesion length 132mm ST vs. 127mm PTA


Schillinger M et al. NEJM. 2006

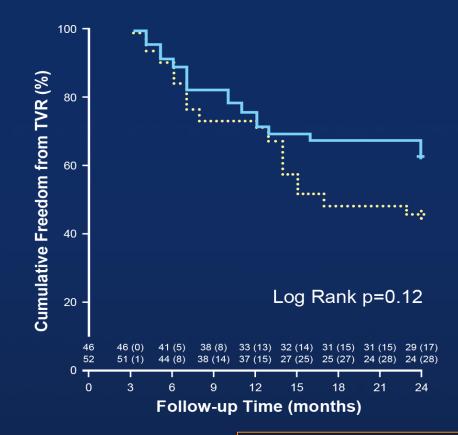
Nitinol Stent vs. PTA Randomized Intermittent Claudication and Chronic CLI of SFA

Lesion length 132mm ST vs. 127mm PTA


Schillinger M et al. NEJM. 2006

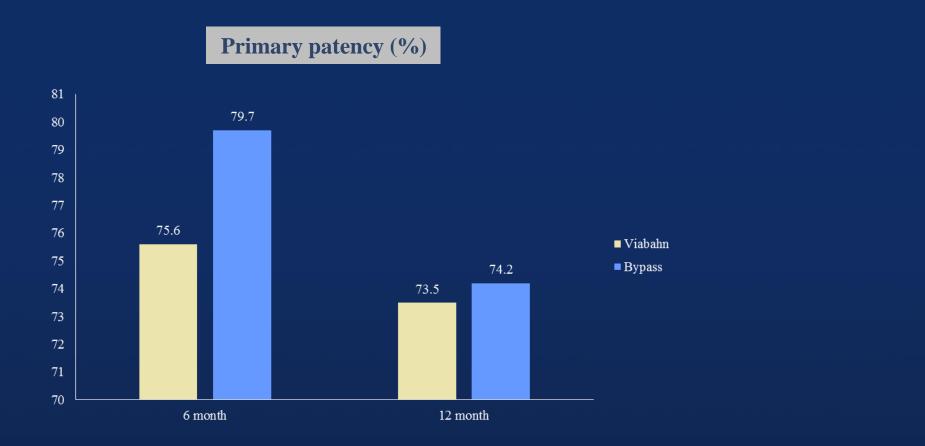
Primary ST vs. PTA with Optional ST Sustained Benefit at 2 Years

Lesion length 112mm ST vs. 93mm PTA


Schillinger M et al. Circulation. 2007

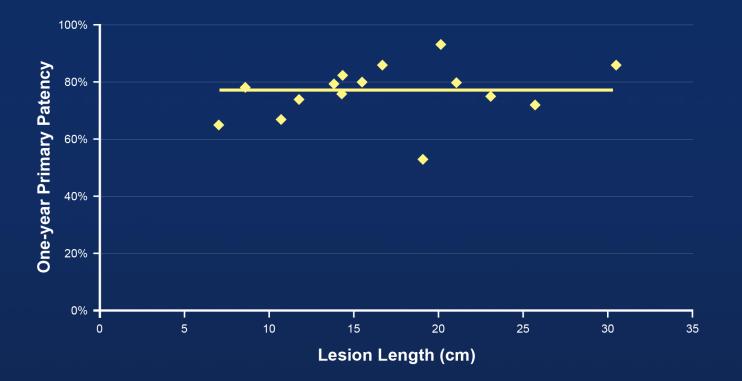
Primary ST vs. PTA with Optional ST Sustained Benefit at 2 Years

Lesion length 112mm ST vs. 93mm PTA



Schillinger M et al. Circulation. 2007

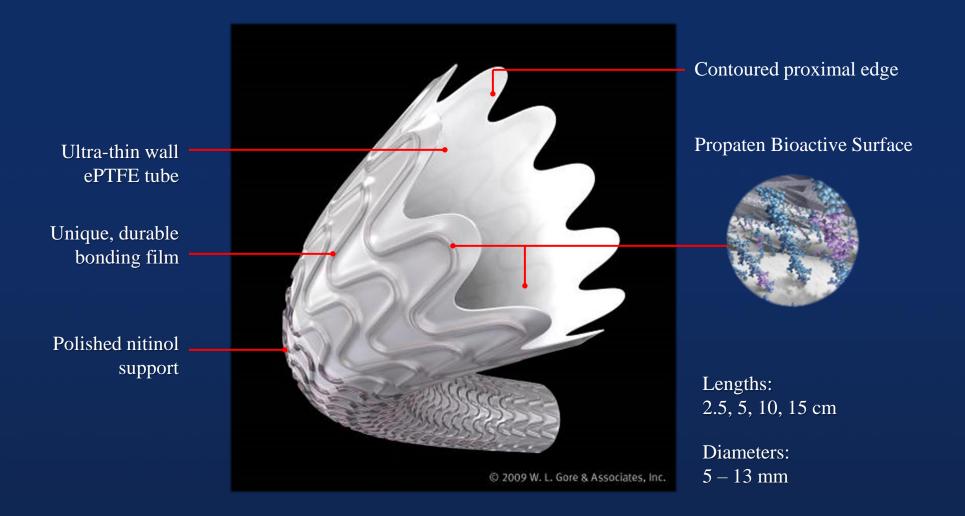
Viabahn Graft Stent Stented length: 25.6±15 cm



Jet K et al. J Vasc Surg. 2007

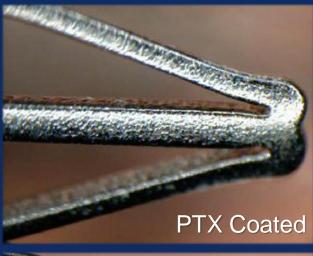
TCTAP2024

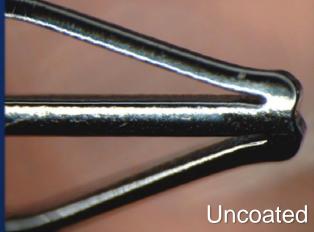
Viabahn 1-year Primary Patency Based on Lesion Length 988 Limbs in 15 Independent Studies



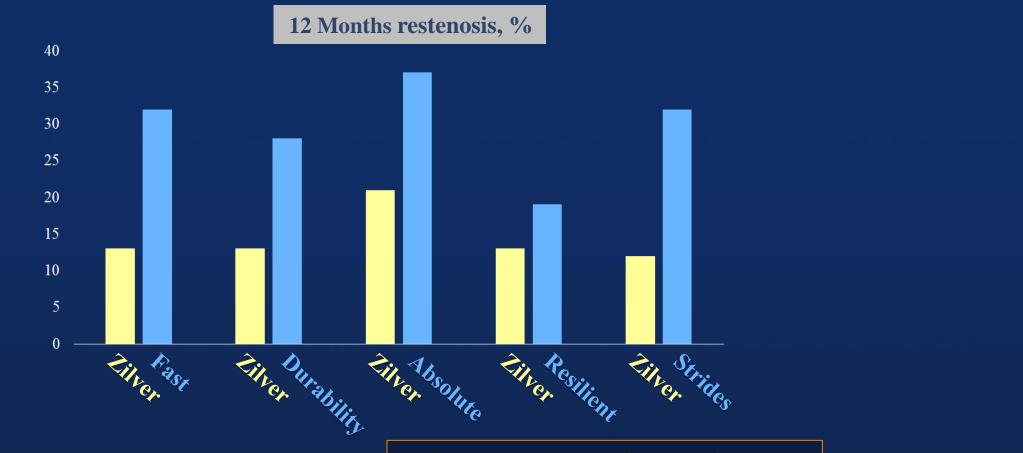
Patient demographics, lesion characterization, and patency definitions may differ among studies. Studies include at least 30 limbs.

Endoprosthesis Description

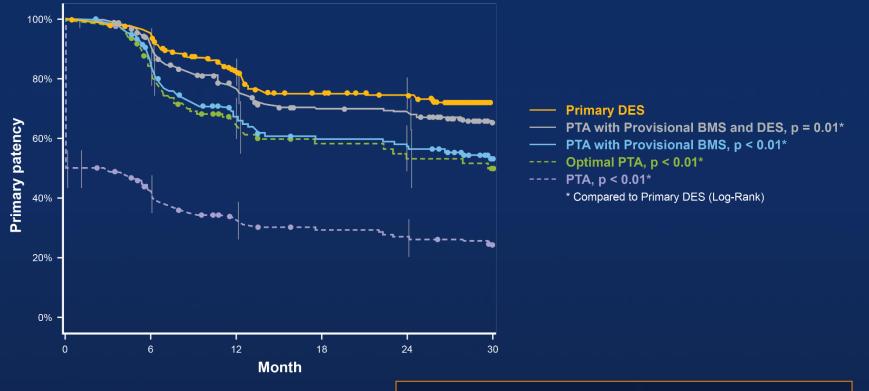




Zilver[®] PTX[®] Drug Eluting Stent

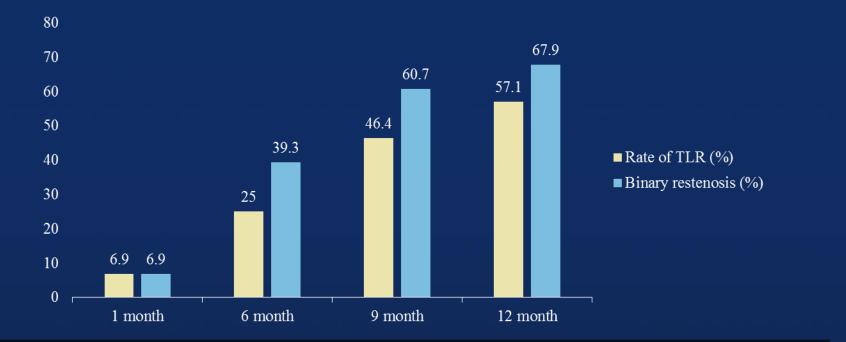

Designed for the SFA CE Marked Investigational in the US and Japan Dual therapy stent Mechanical support: Zilver[®] Flex[™] Stent Plaftorm coating: Paclitaxel only No polymer or binder $3 \mu g/mm^2$ dose density Sponsor: Cook Medical

Zilver PTX for de novo Lesion Matching comparison with other stent trials



Dake MD et al. J Endovasc Ther. 2011

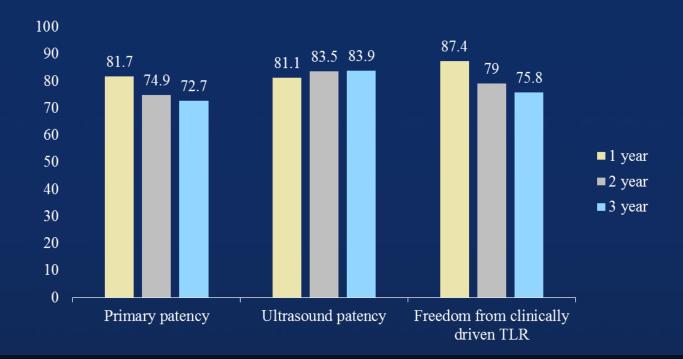
Zilver PTX vs. PTA/Provisional BMS Randomized and Single-Arm Clinical Studies 2 Year Follow-Up of 236 Primary DES vs. 238 Primary PTA and 59 Provisional BMS vs. Provisional DES



Dake MD et al. J Am Coll Cardiol. 2013

Biodegradable Igaki-Tamai Stent First-generation PLLA fully Bioresorbable Stent SFA de novo Lesions of 30 Patients

Conclusion The first fully bioresorbable stent shows angiographic results similar to those of metal stents in occlusive lesions of the SFA.

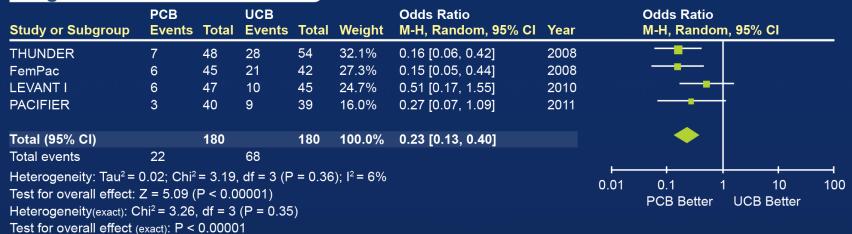

Werner M et al. JACC Cardiovasc Interv. 2014

тстар2024

SMART Nitinol Self-expanding Stent Obstructive SFA Disease

3 year outcomes for 250 stented patients

Conclusion Patients treated with a Nitinol stent show sustained clinical and quality of life improvements at 3 years, with a low, 3.6% rate of stent fracture.


Jaff MR. International Symposium on Endovascular Therapy 2014

тстар2024

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Target lesion revascularization

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

Salvatore C et al. Circ Cardiovasc Interv. 2012

TCTAP2024

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Binary rester	nosis)								
Study or Subgroup	PCB Events	Total	UCB Events	Total	Weight	Odds Ratio M-H, Random, 95% Cl		Odds Ratio M-H, Rando		
THUNDER	7	41	21	48	38.8%	0.26 [0.10, 0.71]				
FemPac	10	31	22	34	36.1%	0.26 [0.09, 0.73]				
PACIFIER	4	40	12	39	25.1%	0.25 [0.07, 0.86]				
Total (95% CI)		112		121	100.0%	0.26 [0.14, 0.48]		\bullet		
Total events	21		55							
Heterogeneity: Tau ² =	0.00; Chi ²	² = 0.01	, df = 2 (F	P = 1.00	0); $I^2 = 0\%$					
Test for overall effect:	Z = 4.27 ((P < 0.0	001)				0.01	0.1 1	10	100
Heterogeneity(exact): C	2hi ² = 0.00	4, df =	2 (P = 0.9	99)				PCB Better	UCB Better	
Test for overall effect ((exact): P <	0.0000)1							

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

Salvatore C et al. Circ Cardiovasc Interv. 2012

TCTAP2024

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Late lumen lo	oss								
Study or Subgroup	PCB Mean	SD	Total	UCB Mean	SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
THUNDER	0.4	1.2	41	1.7	1.8	48	19.6%	-1.30 [-1.93, -0.67]	
FemPac	0.5	1.1	31	1	1.1	34	25.2%	-0.50 [-1.04, 0.04]	
LEVANT I	0.4	1.1	39	1.09	1	35	29.7%	-0.69 [-1.17, -0.21]	
PACIFIER	-0.05	1.1	40	0.61	1.3	39	25.5%	-0.66 [-1.19, -0.13]	
Total (95% CI)			151			156	100.0%	0.75 [-1.06, -0.45]	◆
Total events									
Heterogeneity: Tau ² = (0.02; Ch	i ² = 3	.95, df	= 3 (P =	0.27	'); I ² = 2	4%		-2 -1 0 1 2
Test for overall effect: 2	Z = 4.78	(P <	0.0000	01)					PCB Better UCB Better

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

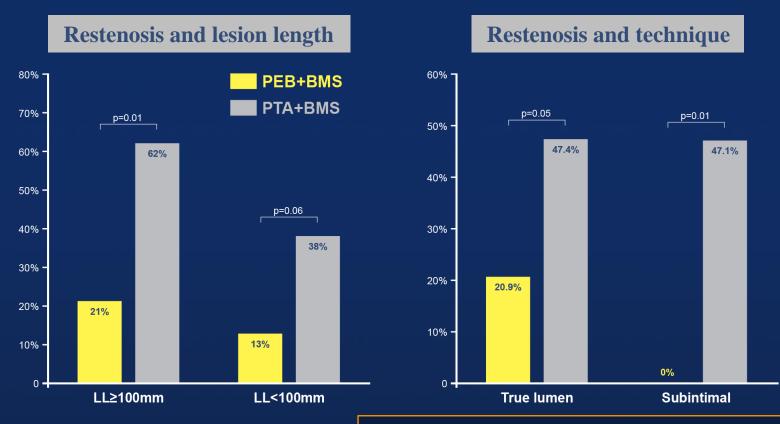
Salvatore C et al. Circ Cardiovasc Interv. 2012


TCTAP2024

DEBATE-SFA Randomized Trial

PEB+BMS vs. PTA+BMS with intermittent claudication or CLI

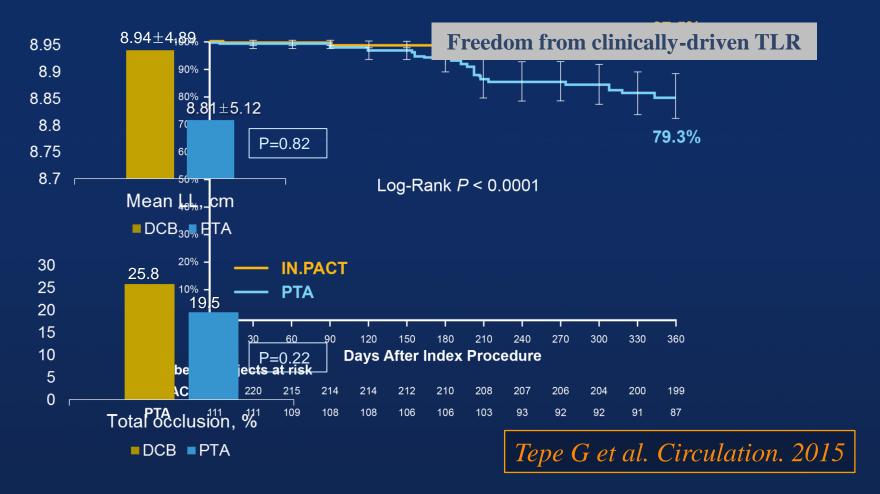
12-Month Results from 55 Lesion vs. 55 Lesion


Liistro F et al. J Am Coll Cardiol Intv. 2013

DEBATE-SFA Randomized Trial PEB+BMS vs. PTA+BMS with intermittent claudication or CLI

12-Month Results from 55 Lesion vs. 55 Lesion

Liistro F et al. J Am Coll Cardiol Intv. 2013



IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease

12-Month Results from 207 DCB vs 109 PTA

тстар2024

IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease 12-Month Results from 207 DCB vs 109 PTA

Outcome	DCB (n=220)	PTA (n=111)	P Value
Primary efficacy – primary patency, % (m/n)	82.2 (157/191)	52.4 (54/103)	<0.001
12-month efficacy outcomes			
All TLR, % (m/n)	2.9 (6/207)	20.6 (22/107)	< 0.001
Clinically driven TLR, % (m/n)	2.4 (5/207)	20.6 (22/107)	<0.001
Clinically driven TVR, % (m/n)	4.3 (9/207)	23.4 (25/107)	<0.001
Primary sustained clinical improvement, % (m/n)	85.2 (167/196)	68.9 (73/106)	<0.001
ABI/TBI	0.951±0.221#	0.886±0.169	0.002

Tepe G et al. Circulation. 2015

IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease

12-Month Results from 207 DCB vs 109 PTA

Outcome	DCB (n=220)	PTA (n=111)	P Value
12-month safety outcomes			
30-day device- and procedure-related death, % (m/n)	0.0 (0/218)	0.0 (0/111)	>0.999
Target limb major amputation, % (m/n)	0.0 (0/207)	0.0 (0/107)	>0.999
All-cause death, % (m/n)	1.9 (4/207)	0.0 (0/107)	0.93
Thrombosis, % (m/n)	1.4 (3/207)	3.7 (4/107)	0.10
12-month functional outcomes			
Change from baseline by EQ-5D Index	0.1059±0.2089#	0.0730±0.1951	0.095
Walking impairment, %	72.7±31.4#	73.6±29.5	0.590
Change in 6MWT from baseline to 12 mo, m	38.7±92.1#	59.1±102.3	0.878

Tepe G et al. Circulation. 2015

SMART[®] Flex Nitinol Self Expanding Stent

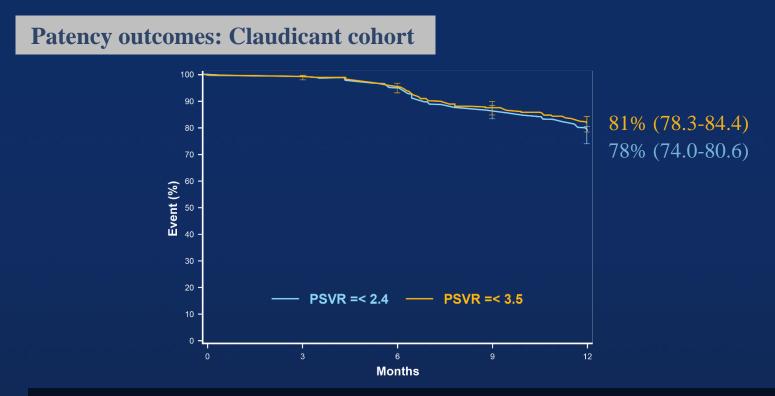
SilverHawk Directional Atherectomy

MICRO EFFICIENT COMPRESSION (MEC[™]) TECHNOLOGY Tiny, laser-drilled nosecone holes

Increase tissue collection capacity, potentially reducing procedure time and number of insertions (LS-M, LX-M, MS-M, SXL, and EXL models)

SILVERHAWK TECHNOLOGY -

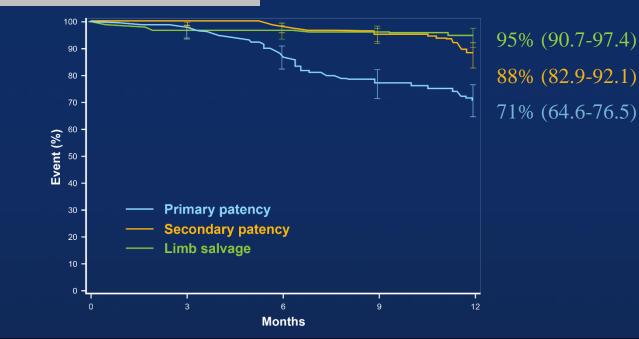
Engages and treats mild- to moderately-calcified lesions and offers the convenience of on-the-wire cleaning


DEFINITIVE LE

Provides insight into the clinical utility of directional atherectomy with the TurboHawk and SilverHawk device in a broad range of patients. (diabetic, non-diabetic, claudicants, and those with CLI)

DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Conclusion The DEFINITIVE LE study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.


McKinsey et al. J Am Coll Cardiol Intv. 2014

DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Endpoint outcomes: CLI cohort

Conclusion The DEFINITIVE LE study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

McKinsey et al. J Am Coll Cardiol Intv. 2014

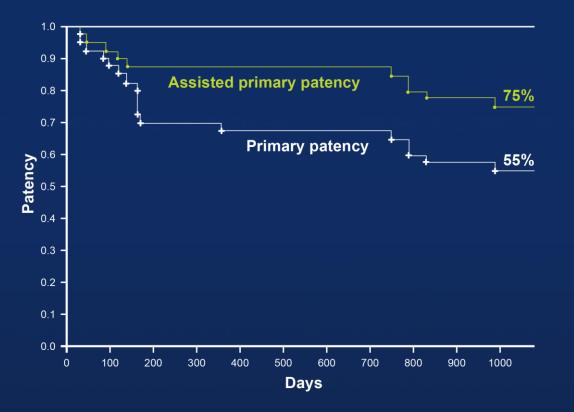
DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Patency outcomes: Diabetic vs. Nondiabetic claudicants

	Months	0	3	6	9	12
Dichatia	At risk	345	331	309	261	150
Diabetic	Patency (95% CI)	100 (100.0 100.0)	99 (96.5 99.4)	95 (92.2 97.0)	85 (80.6 88.5)	77 (71.7 81.4)
Non-	At risk	398	376	346	309	167
Diabetic	Patency (95% CI)	100 (100.0 100.0)	99 (98.1 100.0)	95 (92.1 96.7)	88 (83.6 90.5)	78 (72.9 82.1)

Conclusion DA was shown to be noninferior for treating PAD in patients with diabetes compared with those without diabetes.

McKinsey et al. J Am Coll Cardiol Intv. 2014


SFA Patency Comparison

Study	Device	Mean Length, cm	Patency, %	Patency Definition
DEFINITIVE LE	DA	8.1	75	$PSVR \le 2.4$
RESILIENT	BMS	6.2	81.3	PSVR <2.5
DURABILITY II	BMS	8.9	77.2	PSVR <2.0
STRIDES	DES	9.0	68	PSVR <2.5
Zilver RCT	DES	5.4	83.1	PSVR <2.0
Italian Registry	DCB	7.6	83.7	PSVR <2.5
LEVANT I	DCB	8.1	67	PSVR <2.5

Directional Atherectomy Calcified Stenotic Lesion of SFA, TASC B and C 3-Year Results of 59 Lesion, Mean Lesion Length 7.9cm

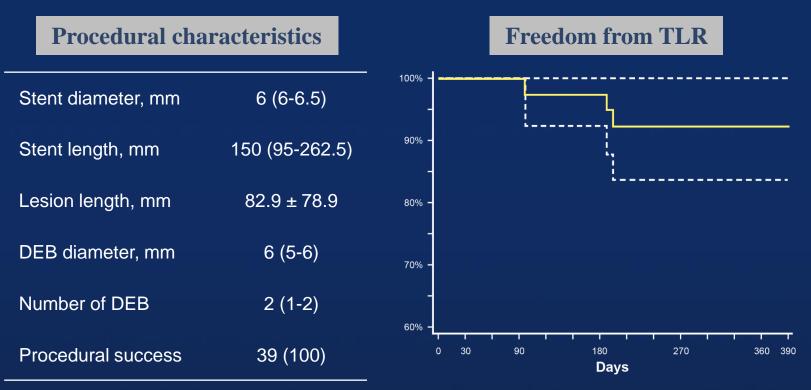
Minko P et al. Cardiovasc Intervent Radiolol. 2014


ISR Classification

Classification and Clinical Impact Freedom From Recurrent ISR

Classification and Clinical Impact Freedom From Recurrent Occlusion

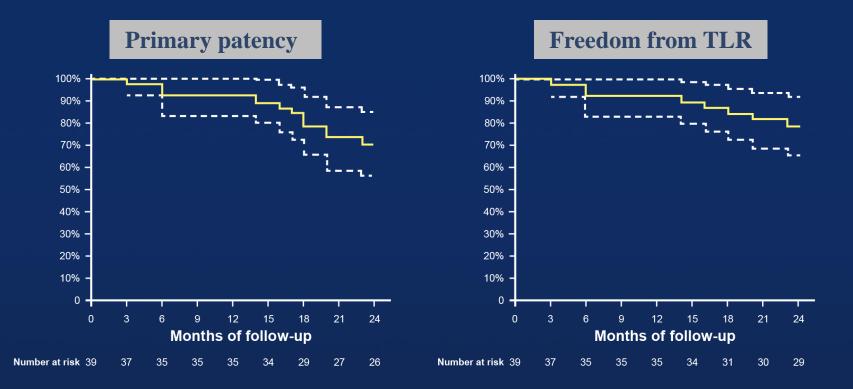
Predictors of Recurrent ISR After POBA for ISR


	Univariate And	alysis	Multivariate And	alysis
Variables	HR (95% CI)	P value	HR (95% CI)	P value
ISR class III	2.90 (1.83-4.56)	<0.01	2.44 (1.33-4.48)	<0.01
Lesion Length (mm)	1.004 (1.002-1.007)	< 0.01	1.001 (0.998-1.005)	0.50
Reference vessel diameter (mm)	0.62 (0.44-0.87)	< 0.01	0.63 (0.44-0.89)	<0.01
Early restenosis	1.92 (1.13-3.23)	0.02	1.60 (0.94-2.73)	0.09

DEB for treatment of SFA ISR Final post-dilation with paclitaxel-eluting balloons

12-Month Results of 39 Consecutive Patients

Dotted lines = 95% confidence interval

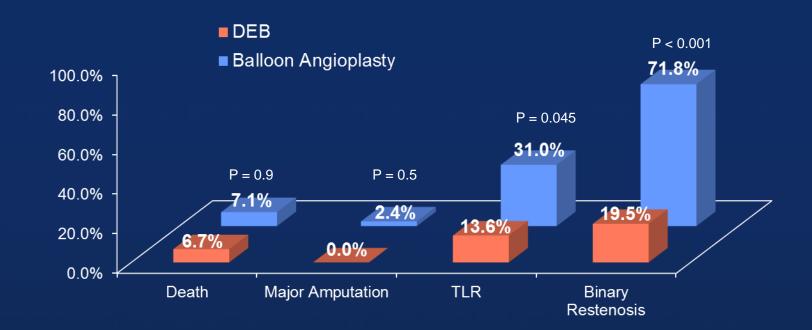

Stabile E. et al. J Am Coll Cardiol 2012

DEB for treatment of SFA ISR Final post-dilation with paclitaxel-eluting balloons

2-Year Follow Up of 39 Consecutive Patients

Dotted lines = 95% confidence interval

Virga V et al. JACC Cardiovasc Interv. 2014



DEBATE-ISR

DEB vs. Standard Angioplasty to Reduce Recurrent Restenosis in Diabetics with Femoropopliteal ISR

44 patients with claudication or CLI treated with paclitaxel eluting balloon

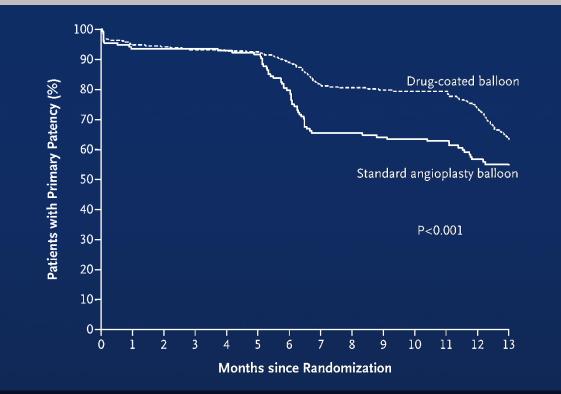
Conclusion Use of DEBs to treat diabetic patients with femoropopliteal ISR appears to reduce recurrent restenosis and repeat angioplasty at 1 year.

Liistro F et al. J Endovasc Ther. 2014

Treatment of ISR in SFA

РТА	Up to 73% restenosis rates at 6-month 49.9% to 84.8% at 12-month	J.Laird et al. JACC 2012 P.Dick et al. Radiology 2008
Cutting Balloon	65% restenosis rates at 6-month	A. Tosaka et al. JACC 2012
Atherectomy	46% restenosis rates at 12-month	T.Zeller et al. JACC 2006
Graft stents	62%~85.1% primary patency at 12- month	TS. Monahan et al. Journal of Vasc Surg 2011 P.Soukas Oral presentation LINC 2011
ELCA/PTA+HFH-Graft stents	48% primary patency at 12-month	J.Laird et al. Cath and Cardiovasc Interv 2012
PTA + Brachytherapy	79.8% primary patency at 12-month	M.Werner et al. JEVT 2012
DES	81% freedom from TLR at 12-month 61% freedom from TLR at 24-month	Thomas Zeller JACC Cardiovasc Interv 2013
DEB	92% freedom from TLR at 12-month	Stabile JACC 2013

New Trial of Treatment in SFA



LEVANT 2 trial

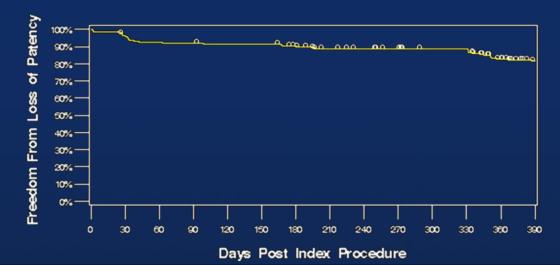
Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease 12 Month Randomized Results

Patency outcomes: Drug-coated balloon vs. Conventional angioplasty

Conclusion DCB was higher than the rate with angioplasty with a standard balloon in a rate of primary patency at 12 months.

TCTAP2024

Kenneth R et al. N Engl J Med. 2015



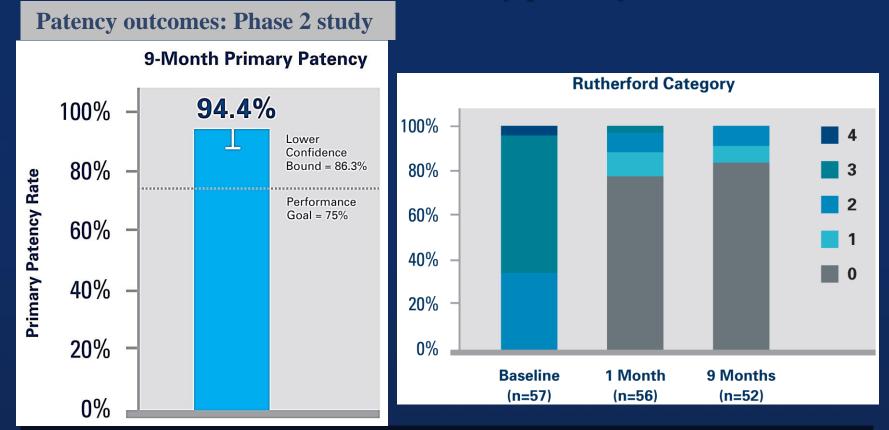
SUPERB trial

Wire-Interwoven Nitinol Stent for Femoropopliteal Artery 12 Month Randomized Results

Composite outcome of death, TLR, limb salvage

Interval	[0, 90)	[90, 180)	[180,270)	[270, 360)	[360, 390
# At Risk	264	242	234	215	188
# Censored	21	4	5	14	3
# Events	1	4	14	13	16
% Survived	1.000	0.996	0.979	0.920	0.863
Standard Error	0.000	0.004	0.009	0.018	0.023

Conclusion Primary endpoint was achieved in 99.2% of patients (P<0.001). Primary patency at 12 months was achieved in 78.9% of population (P<0.001).


TCTAP2024

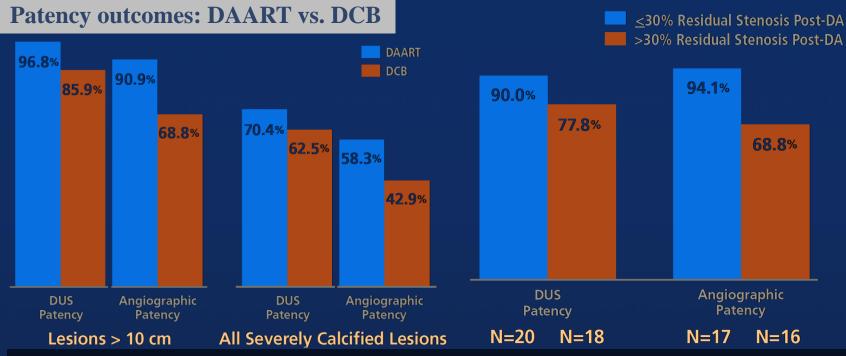
Lawrence G et al. Circ Cardiovasc Interv. 2015

MAJESTIC trial

Paclitaxel-Eluting Self-Expanding Stent for Femoropopliteal Artery 9 Months Primary patency

Conclusion Primary patency was achieved in 94.4% of patients. TLR rate at 9 months was achieved in 3.6% of population.

тстар2024


ClinicalTrials.gov, NCT01820637

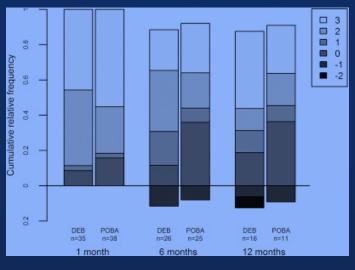
DEFINITIVE AR trial

Revascularization Using Directional Atherectomy combine with Drug Coated Balloon angioplasty

12 Month Prospective Results

Conclusion The DEFINITIVE AR study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

тстар2024



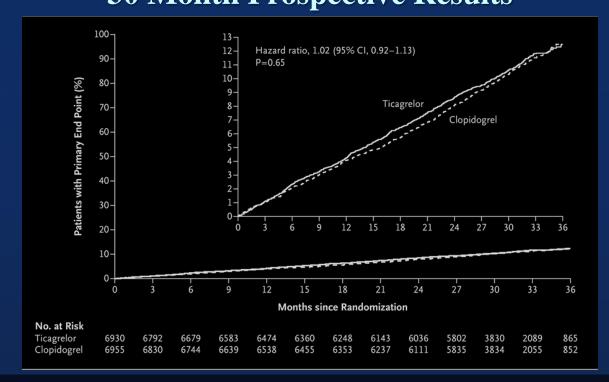
PACUBA trial

Paclitaxel-eluting balloon versus standard balloon angioplasty in ISR of the SFA and proximal popliteal artery 12 Month Prospective Results

	DEB(95% CI)	PTA(95% CI)
Primary pate	ency rate	
6 months	58.8%(0.44-0.78)	31.3%(0.18-0.52)
12 months	40.7%(0.25-0.64)	13.4%(0.05-0.36)*
Freedom fro	om clinically drive TI	LR
6 months	88.2%(0.78-0.99)	83.8%(0.72-0.97)
12 months	49.0%(0.32-0.75)	22.1%(0.10-0.47)
*Log-rank p=	0.02	

Rutherford-Becker Score

Conclusion When treating peripheral arterial disease in patients with ISR in the femoropopliteal artery, paclitaxel-eluting balloon angioplasty provides significantly higher patency rates than standard PTA.



Kinstner C et al. JACC Cardiovasc Interv. 2016

Ticagrelor versus Clopidogrel in symptomatic peripheral arterial disease 30 Month Prospective Results

Conclusion Ticagrelor was not shown to be superior to clopidogrel for the reduction of cardiovascular events.

тстар2024

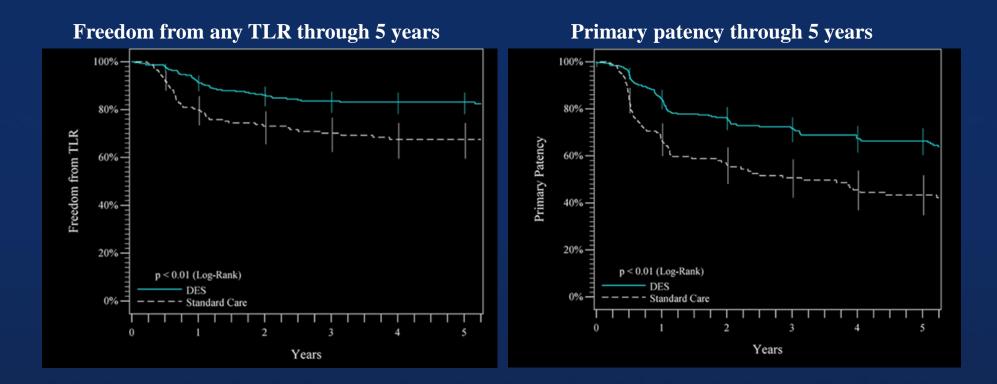
Hiatt R et al. N Engl J Med. 2016

ESPRIT 1 trial

Bioresorbable Everolimus-Eluting Vascular Scaffold for peripheral artery disease 2-year Prospective Results

Rutherford-Becker Score Freedom from any TLR through 24 months 100% 90% 80% Event Free Survival 70% 60% percent 50% RB 40% RB 2 =RB : 20% 30 BB RB ! o Censored 20 RB Days Post Index Proced

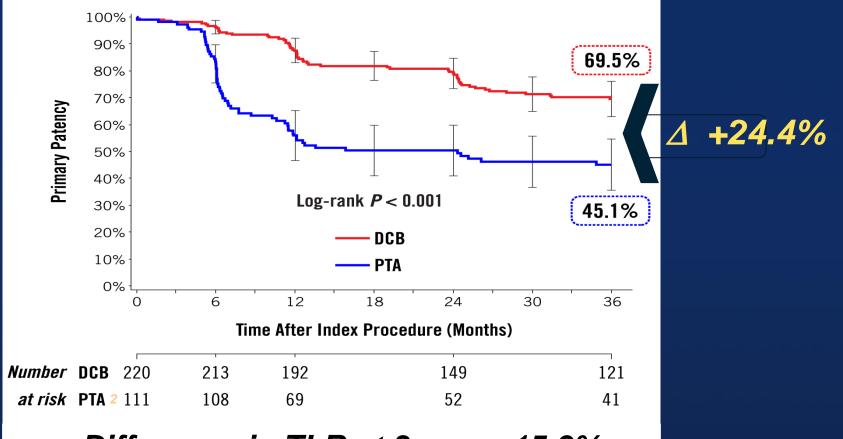
Conclusion The 1-year and 2-year freedom from TLR seems comparable to results of DEB and DES for peripheral arteries


TCTAP2024

Lammer J et al. JACC Cardiovasc Interv. 2016

Zilver PTX randomized trial

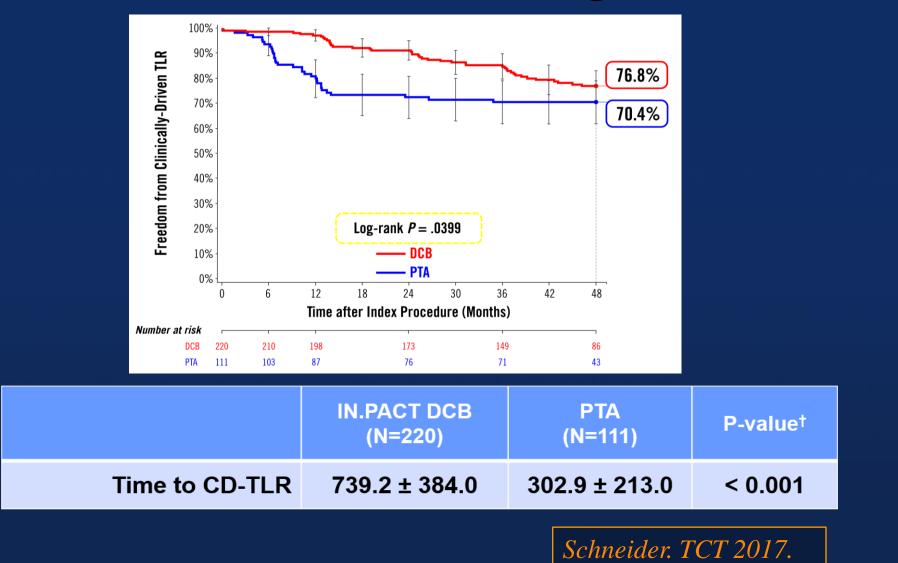
5-year Prospective Results


Conclusion The Zilver PTX DES provided sustained safety and clinical durability in comparison with standard endovascular treatments.

тстар2024

Dake M et al. Circulation. 2016

IN.PACT SFA Trial Primary Patency Through 3 Years


Difference in TLR at 3 years 15.9%

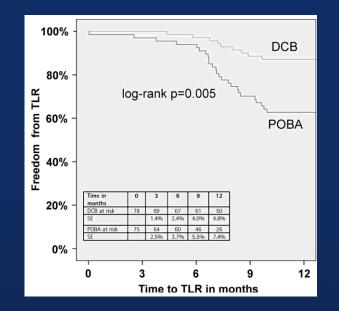
IN.PACT SFA Trial Freedom From CD-TLR Through 4 Years

TAP2024

IN.PACT SFA Trial Safety Outcomes Through 4 Years

	IN.PACT DCB (N=220)	РТА (N=111)	P-value [†]
Primary safety composite [1]	73.4% (135/184)	64.1% (66/103)	0.108
Major adverse events ^[2]	38.0% (70/184)	40.8% (42/103)	0.705
All-cause death	13.0% (24/184)	6.8% (7/103)	0.116
Device-related death	0.0% (0/219)	0.0% (0/111)	>0.999
Target limb major amputation	0.0% (0/184)	0.0% (0/103)	>0.999
Thrombosis	2.2% (4/184)	4.9% (5/103)	0.290

1. Freedom from 30-day device and procedure-related death and target limb major amputation and clinically-driven TVR within 36 months


2. Composite of death, clinically-driven TVR, target limb major amputation, and thrombosis

† P-values are based on Fisher's exact test for superiority with significance level of 0.05

CONSEQUENT Trial Freedom from CD-TLR

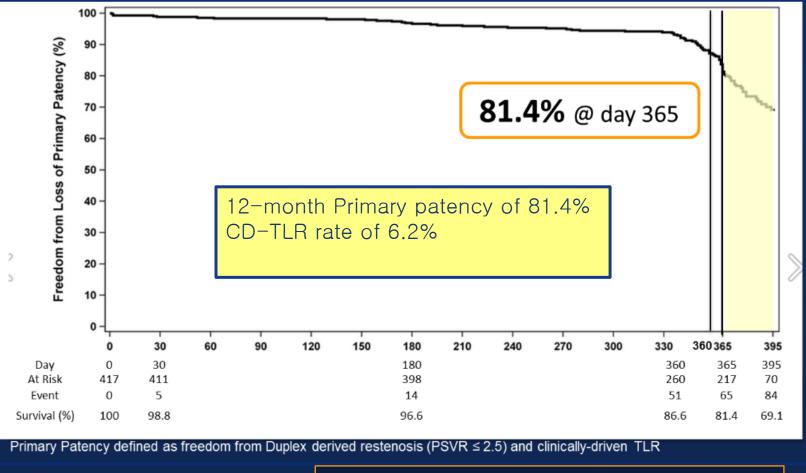


Tepe et al. Cardiovasc Intervent Radiol 2017;40: 1535

ILLUMENATE: 2 RCTs Good Patency at 12 Months US Pivotal²

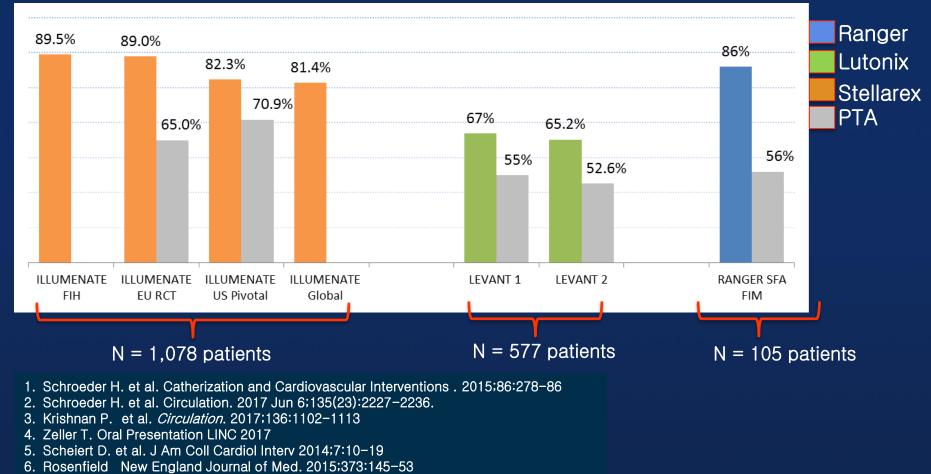
[+] Core-lab adjudicated (VascCore Core laboratory - Boston, MA, USA) Duplex derived Primary Patency based on PSVR ≤2.5. KM survival estimates at 365 days

[*] freedom from CEC adjudicated clinically driven TLR by KM survival estimates at 365 days


- 1. Schroeder H, Werner M, Meyer DR, Reimer P, Krüger K, Jaff MR, Brodmann M; ILLUMENATE EU RCT Investigators. Circulation. 2017 Jun 6;135(23):2227-2236.
- Krishnan P, Faries P, Niazi K, Jain A, Sachar R, Bachinsky WB, Cardenas JA, Werner M, Brodmann M, Mustapha JA, Mena-Hurtado CI, Jaff MR, Holden AH, Lyden SP. Stellarex Drug-Coated Balloon for Treatment of Femoropopliteal Disease: 12-Month Outcomes from the Randomized ILLUMENATE Pivotal and Pharmacokinetic Studies. *Circulation*. 2017;136:1102–1113

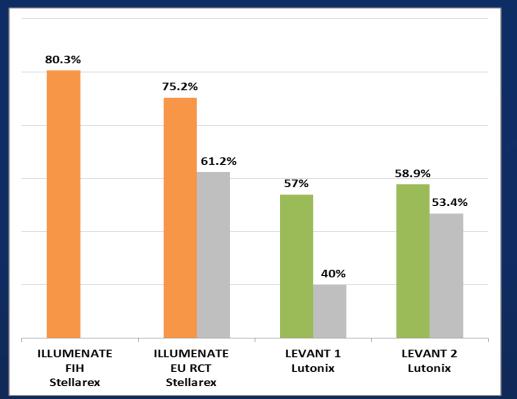
M. Weinberg Oral Presentation. TCT 2017

ILLUMENATE Global: Similar 1-Year Patency Primary Patency through 1 year



Zeller T. Oral Presentation. LINC 2017

Primary Patency at 1 year Core Lab Adjudicated


7. Scheinert D. Oral Presentation. Charing Cross 2017

тстар2024

M. Weinberg Oral Presentation. TCT 2017

Primary Patency at 2 years Core Lab Adjudicated

*Exact rates, KM estimate not reported

Schroeder H., et al. *Catheterization and cardiovascular interventions* 2015;86:278–86 M. Brodmann. ILLUMENATE European Randomized Trial: 2-year Results. Oral Presentation. VIVA September, 2017, Las Vegas, NV. Scheinert et al. J Am Coll Cardiol Intv 2014; 7:10–9 Laurich C. Oral Presentation. *SVS*. 2015

ТСТАР2024

M. Weinberg Oral Presentation. TCT 2017

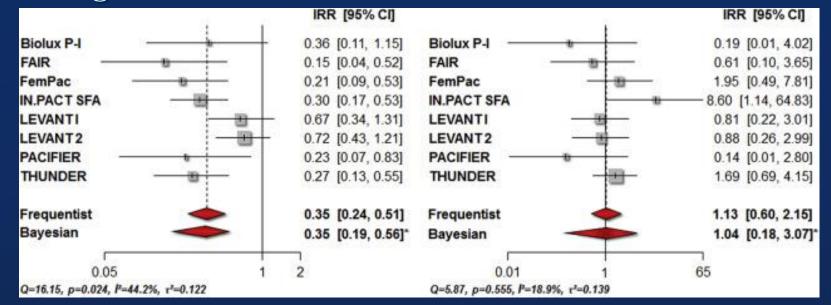
DCB vs. Plain balloon angioplasty for Femoropopliteal artery disease

Meta-Analysis of Randomized Trials Risk of TLR at 12 months comparing DCB with PB

	DC	в	PE	3			0			
	Events	Total	Events	Total	1	RR	[95% CI]	Weight	Z Value	p Value
Biolux P-I	4	25	10	24	0.	38	[0.14, 1.06]	11.6%	-1.848	0.065
FAIR	3	47	16	44	0.	18	[0.06, 0.59]	10.3%	-2.864	0.004
FemPac	3	45	14	42	. 0.	20	[0.06, 0.65]	10.2%	-2.687	0.007
IN.PACT SFA	6	207	22	107	0.	.14	[0.06, 0.34]	12.9%	-4.404	< 0.001
LEVANTI	13	45	14	42	- O.	.87	[0.46, 1.62]	15.3%	-0.447	0.655
LEVANT 2	35	285	24	143	· 0.	.73	[0.45, 1.18]	16.8%	-1.278	0.201
PACIFIER	3	42	12	43	- 0.	26	[0.08, 0.84]	10.1%	-2.242	0.025
THUNDER	5	48	26	54	0.	22	[0.09, 0.52]	12.9%	-3.341	0.001
Frequentist	72	744	138	499	0.	.33	[0.19, 0.57]	100%	-3.997	<0.001
Bayesian					0.	30	[0.14, 0.58]*			
Q=22.85, p=0.00	2, τ²=0.40	5, I²=69.4	%		i 1 2 10					

Conclusion DCB significantly reduce the risk of TLR as compared with PB without any effect on all-cause death.

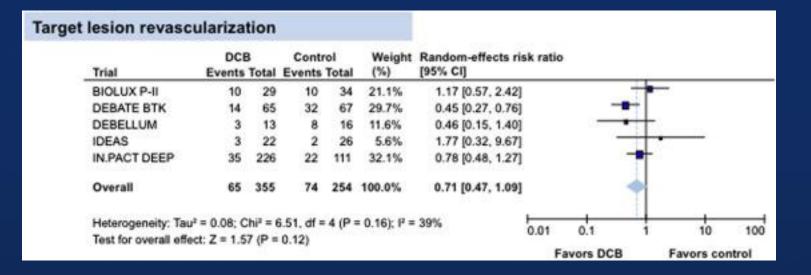
тстар2024


Giacoppo D et al. JACC Cardiovasc Interv. 2016

DCB vs. Plain balloon angioplasty for Femoropopliteal artery disease

Meta-Analysis of Randomized Trials

Long-Term TLR and All-cause Death in DCB versus PB


Conclusion DCB significantly reduce the risk of TLR as compared with PB without any effect on all-cause death.

тстар2024

Giacoppo D et al. JACC Cardiovasc Interv. 2016

Meta-Analysis of Randomized Trials Risk of TLR comparing DCB with control

Conclusion The treatment of infrapopliteal arteries with DCBs is associated with similar outcomes and favorable angiographic efficacy at 1-year follow-up.

тстар2024

Meta-Analysis of Randomized Trials Risk of Amputation comparing DCB with control

Amputation

Trial	DCE Events		Contr Events			Random-effects risk ratio [95% Cl]	
BIOLUX P-II	8	29	9	34	23.7%	1.04 [0.46, 2.35]	
DEBATE BTK	18	65	21	67	56.1%	0.88 [0.52, 1.50]	
DEBELLUM	1	13	2	16	3.0%	0.62 [0.06, 6.05]	
IDEAS	1	25	2	27	2.9%	0.54 [0.05, 5.59]	
IN.PACT DEEP	20	227	4	111	14.3%	2.44 [0.86, 6.98]	
Overall	48	359	38	255	100.0%	1.04 [0.70, 1.54]	
Heterogeneity: Tau				4 (P	= 0.47); l² =	0% 0.01 0.1 1 10	10
Test for overall effe	101.2 = 0.1	0 (1	0.00)			Favors DCB Favors contro	à.

Conclusion The treatment of infrapopliteal arteries with DCBs is associated with similar outcomes and favorable angiographic efficacy at 1-year follow-up.

тстар2024

Meta-Analysis of Randomized Trials Risk of Death comparing DCB with control

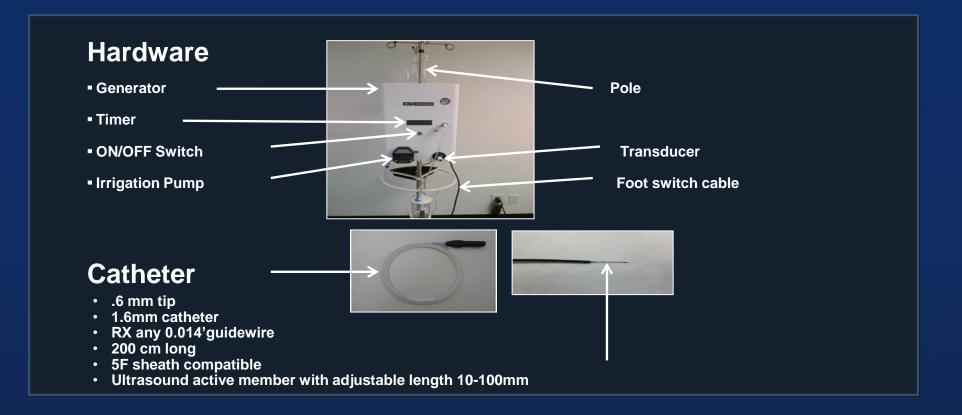
Death

Trial	DCE Events		Contr Events	13.000.000	(%)	Random-effects ris [95% CI]		<i>.</i>			
BIOLUX P-II	3	29	2	34	7.5%	1.76 [0.32, 9.81]		53			
DEBATE BTK	12	65	11	67	39.9%	1.12 [0.53, 2.37]			-		
DEBELLUM	1	13	2	16	4.2%	0.62 [0.06, 6.05]			•		
IDEAS	2	25	3	25	7.6%	0.67 [0.12, 3.65]			•	-	
IN.PACT DEEP	23	227	9	111	40.7%	1.25 [0.60, 2.61]			-		
Overall	41	359	27	253	100.0%	1.14 [0.71, 1.82]			*		
Heterogeneity: Tau	u ² = 0.00; C	:hi² = (0.97, df =	4 (P	= 0.91); l ² =	0%	0.01			10	10
Test for overall effe	ect: Z = 0.5	4 (P =	0.59)				0.01	0.1	1	10	10
							F	avors DCI	B	Favors cor	trol

Conclusion The treatment of infrapopliteal arteries with DCBs is associated with similar outcomes and favorable angiographic efficacy at 1-year follow-up.

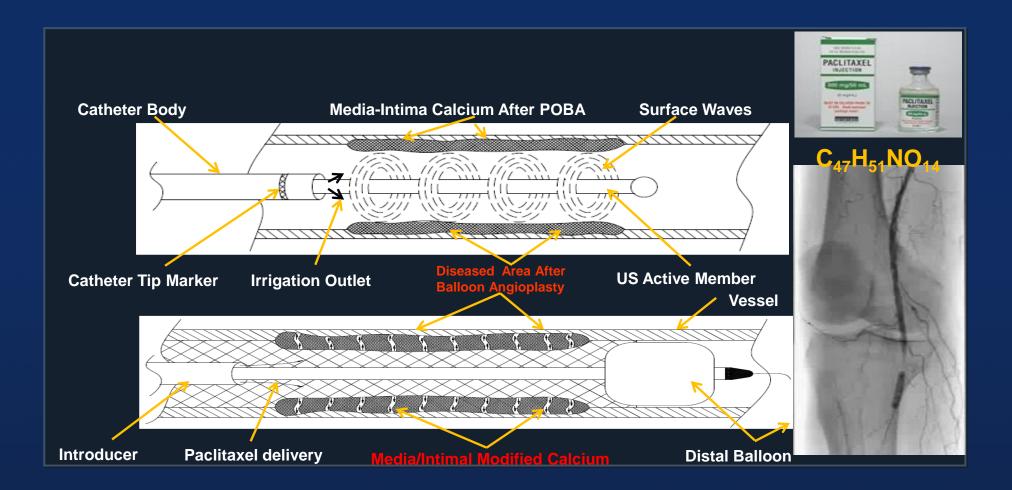
тстар2024

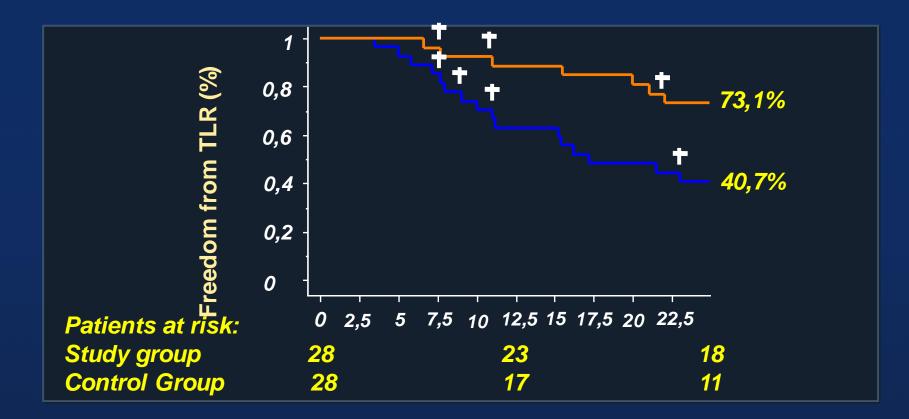
Meta-Analysis of Randomized Trials Risk of Late lumen loss comparing DCB with control


	38	DCB		C	ontrol	é –	Weight	Mean difference			
Trial	Mean	SD	Total	Mean	SD	Total	(%)	[95% CI]			
BIOLUX P-II	0.56	0.65	32	0.54	0.66	30	21.4%	0.02 [-0.31, 0.35]		-	
DEBATE BTK	0.91	1.1	80	2	1.1	78	21.0%	-1.09 [-1.43, -0.75]	-0-	1	
DEBELLUM	0.66	0.9	13	1.69	1.5	17	11.0%	-1.03 [-1.89, -0.17]	0		
IDEAS	1.15	0.3	19	1.35	0.2	25	24.3%	-0.20 [-0.36, -0.04]		-0-	
IN.PACT DEEP	0.51	0.7	125	0.6	1	63	22.4%	-0.09 [-0.37, 0.19]		-0	-
Overall			269			213	100.0%	-0.41 [-0.79, -0.03]	-	-	

Conclusion The treatment of infrapopliteal arteries with DCBs is associated with similar outcomes and favorable angiographic efficacy at 1-year follow-up.

TCTAP2024


The Genesis[™] System


Method of Action

PACUS trial Freedom from TLR 24m FU

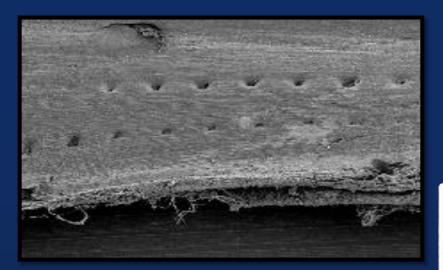
тстар2024

C. Giudice, Oral Presentation. TCT 2017

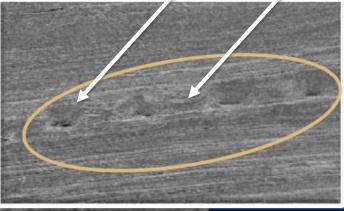
Serranator® Alto PTA Serration Balloon Catheter

- 4 embedded serrated metal strips
- Nylon, semi-compliant balloon
- 6F Sheath with 0.018" GW
- 4.0, 5.0, 6.0 mm balloon diameters
- 40, 80, 120 mm balloon lengths

Designed to create linear, interrupted scoring along the endoluminal surface


Serranator® Alto PTA Serration Balloon Catheter Mechanism of action

- As the Serranator inflates and contacts the artery wall, the strips create multiple interrupted lines of scoring (serrations)
- Serrations are responsive to the balloon's energy, enabling predictable and controlled lumen expansion along the lines



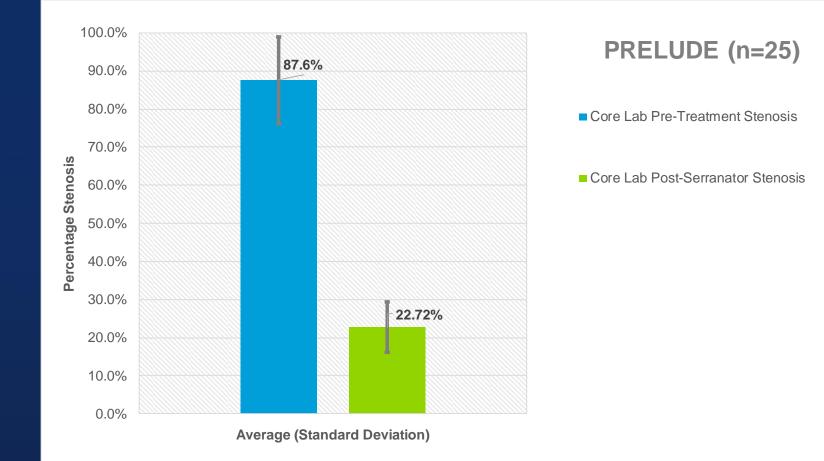
Serranator® Alto PTA Serration Balloon Catheter Mechanism of action

Scanning Electron Microscopy (SEM) of porcine tissue at 7-days

Serrations create linear and circumferential expansion

PRELUDE study Result in calcification

Characteristic	Results
Degree of Calcification None/mild Moderate Severe*	11 (44%) 7 (28%) 7 (28%)
Avg. Lumen Gain	
Overall Severe Calcification	3.36 mm 3.45 mm


* Severe calcification of target lesion: circumferential calcium and >50% of lesion length.

W. Gray MD, Oral Presentation. TCT 2017

PRELUDE study Pre- and Post-stenosis

W. Gray MD, Oral Presentation. TCT 2017

EffPac-RCT Trial

Efficacy: Target Lesion Revascularization (TLR)

	LUMINOR®	POBA	Relative Risk, 95% CI (LUMINOR® vs. POBA)	Number needed t o treat (NNT)	p value
TLR 6M (%)	1.3 (1/76)	17.1 (13/76)	0.082 [CI: 0.012; 0.560]	7	<0.001
TLR 12M (%)	1.3 (1/76)	18.7 (14/75)	0.077 [CI: 0.011; 0.526]*	6	<0.001

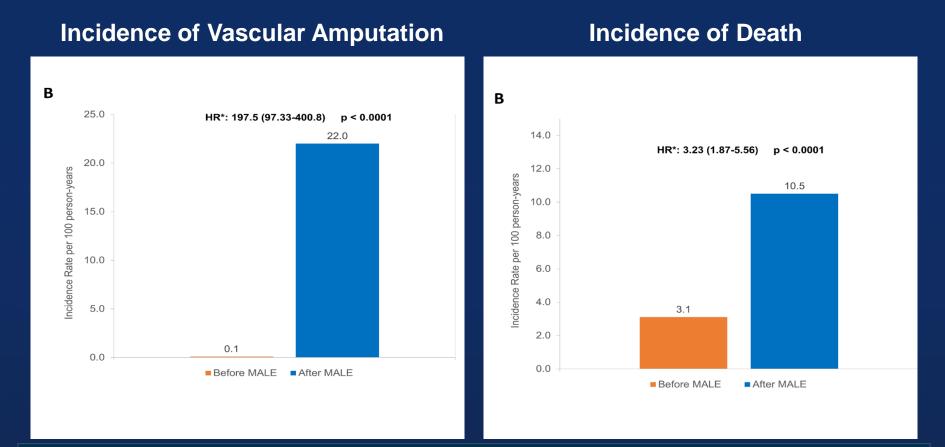
Efficacy: Patency

	LUMINOR®	РОВА	Relative Risk, 95% Cl (LUMINOR® vs. POBA)	Number needed to treat (NNT)	p value
Patency 6M (%)	94.7 (72/76)	75.0 (57/76)	1.26 [CI: 1.100; 1.443]	6	<0.001
Patency 12M (%)	90.3 (65/72)	65.3 (47/72)	1.38* [CI: 1.146; 1.664]	4	<0.001

Marcus Thieme MD, TCT 2018

The VIVA Calcium Scale Unification Project: Proposed Investigational Plan

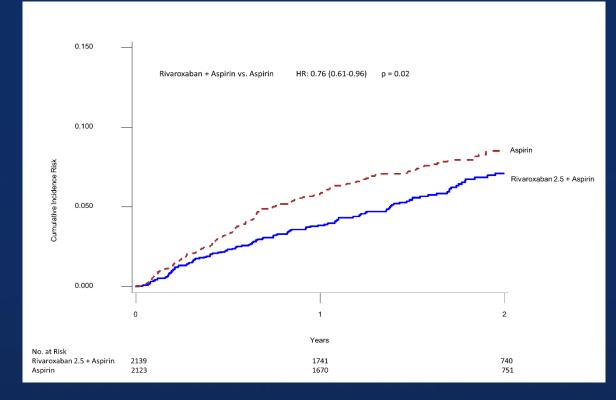
IN.PACT RTC/Global Japan IP SFA ILLUMENATE RCT/ ILLUMENATE Global SFA-LONG Study


Courtesy of Krishna Rocha-Singh, MD

Jeffrey J. Popma MD TCT 2018

TCTAP2024

High Rate of Amputation & Death after MALE in PAD : Results from COMPASS

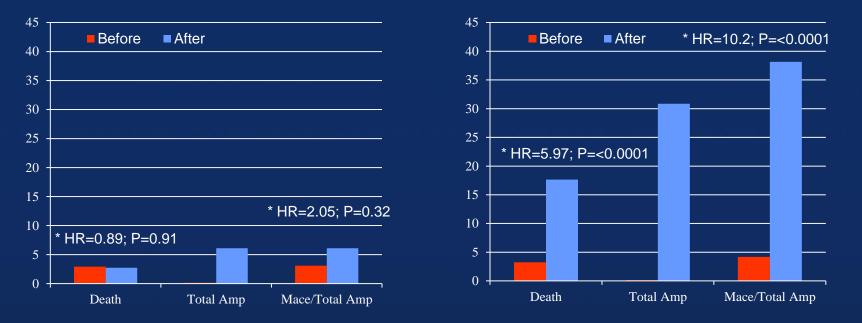

Conclusion: MALE is associated with a poor prognosis: 3 fold increase in death,200 fold increase in amputation.

Anand SS et al, J Am Coll Cardiol. 2018 May 22;71(20):2306-2315

High Rate of Amputation & Death after MALE in PAD : Results from COMPASS

Conclusion: Compared to aspirin, Riva/Aspirin combination prevents MALE, vascular interventions, and total peripheral vascular outcomes

Anand SS et al, J Am Coll Cardiol. 2018 May 22;71(20):2306-2315



High Rate of Amputation & Death after MALE in PAD : Results from COMPASS

Riva/Aspirin

Aspirin Only

*HR determined by time-dependent Cox model

Conclusion: Outcomes after MALE are worse for aspirin-treated patients

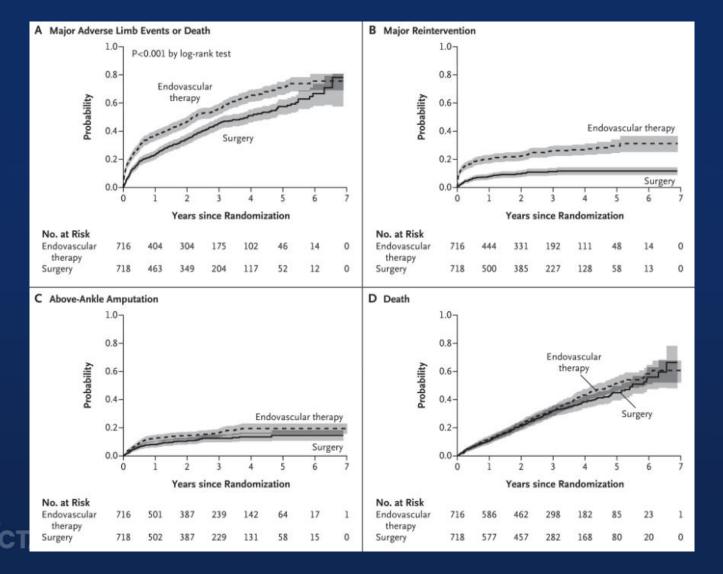
Anand SS et al, J Am Coll Cardiol. 2018 May 22;71(20):2306-2315

DES vs DCB Revascularization in Patients wiith Femoropopliteal Arterial Disease

REAL PTX: randomized 150-patient trial of paclitaxel-based devices that included lesions \leq 30 cm, CTOs, and severe calcification.

- One in four DCB patients required bailout stenting
- Primary patency was similar at 12 months, but by 36 months a tre nd favored DES over DCB (54% vs 38%; P = 0.17)
- In lesions > 10 cm, restenosis accrued over time in both treatment groups but there was a numerically lower patency rate for DCB at 3 years

Conclusion: The head-to-head comparison suggests equivalent results at 12 months, with a patency advantage for DES at 36 months.

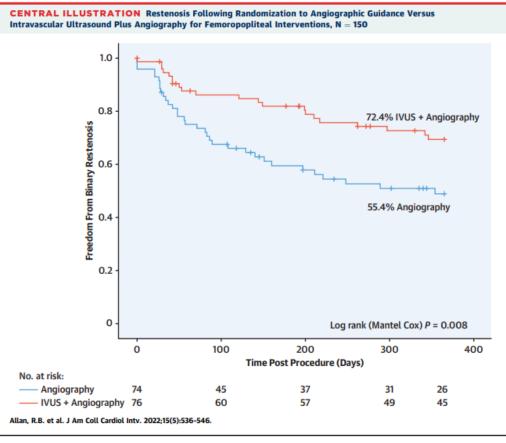


Bausback Y, et al. J Am Coll Cardiol. 2019;73:667-679.

Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia

randomized 1830 patient with CLTI and infra-inguinal peripheral artery disease

Conclusion: In patients with CLTI, initial bypass surgery was associated with a lower incidence of major adverse limb events or death than initial endovascular intervention.

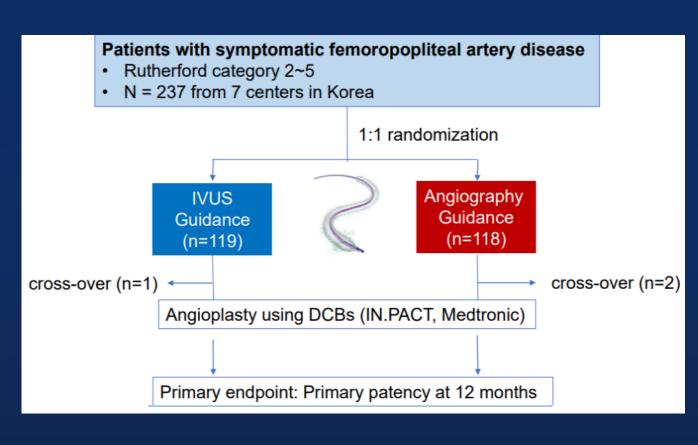

Alik Farber, et al. N Engl J Med 2022; 387:2305-2316.

IVUS guided Femoropopliteal intervention

IVUS guidance vs Angiographic guidance

Kaplan-Meier curve of 12-month freedom from binary restenosis between the control (angiography) and treatment (intravascular ultrasound [IVUS] + angiography) groups.

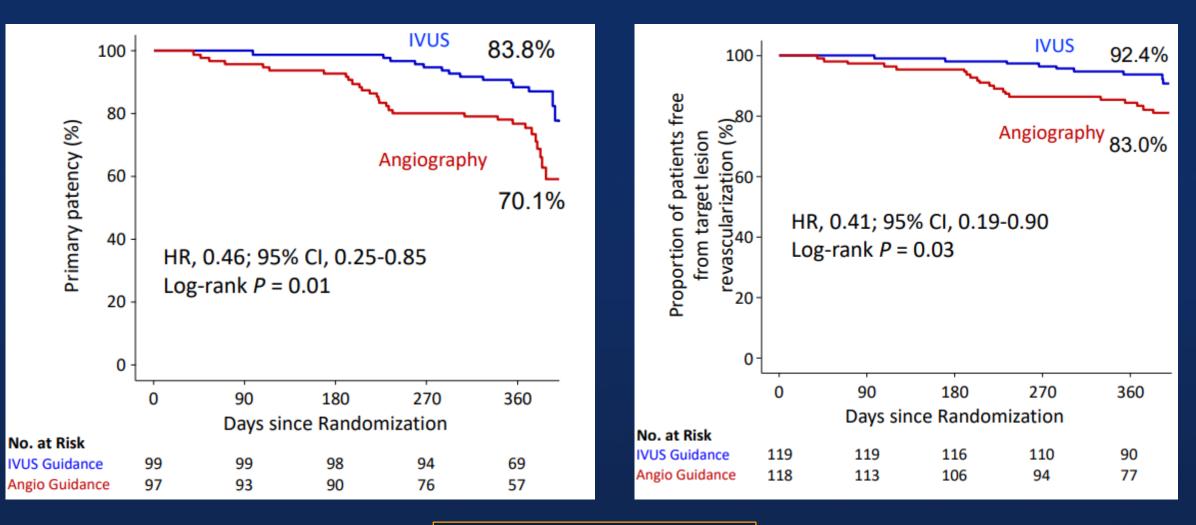
 Randomized 150-patient trial of IVUS guidance or Angiographic guidance


Conclusion

 The use of IVUS resulted in a significant reduction in the rate of restenosis after endovascular intervention

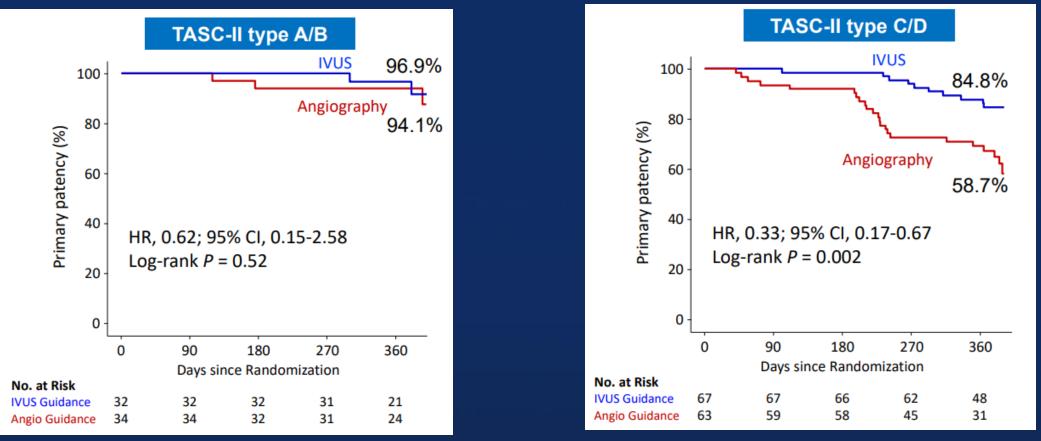
Allan, R.B. et al. J Am Coll Cardiol Intv. 2022;15(5):536-546.

IVUS-DCB trial


Young-Guk Ko. ACC2024

- Primary endpoint
- Primary patency defined as the abscnce of clinically-driven target lesion revascularization(CD-TLR)
- binary restenosis on imaging studies(DUS, CT, Angiography) at 12 month follow-up
- Secondary endpoints
- Freedom from CD-TLR
- Sustained clinical improvement(improved Sx≥1 Rutherford category, no CD TLR)
- Sustained Hemodynamic improvement(ABI≥0.15, no CD TLR)
- Mortality
- Major amputations
- Major bleeding

IVUS-DCB



тстар2024

Young-Guk Ko. ACC2024

IVUS-DCB trial

Conclusion: IVUS guidance significantly improved the outcomes of DCB angioplasty for FPA disease in terms of primary patency, freedom from CD TLR, and sustained clinical and hemodynamic improvement at 12months

тстар2024

Young-Guk Ko. ACC2024

