
Endovascular treatment for Abdominal Aortic Aneurysm

Natural History

JAMA. 2012;307(15):1621-1628

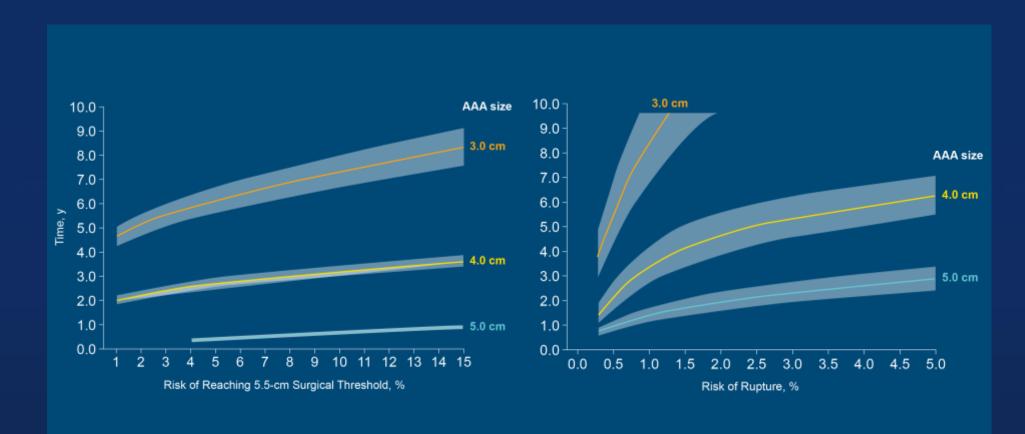
Definition of Abdominal aortic aneurysm

- Segmental, full-thickness dilatation of abdominal aorta exceeding the normal vessel diameter by 50%
- Aneurysm diameter of 3.0 cm regarded as threshold
- Distinct degenerative process involving all layers of vessel wall
- Most common site of aneurysm: infrarenal (85%)
 - Infrarenal Aorta ; 1.4 ~ 3.0 cm
 - Average Aorta ; 2.0 cm

Risk for Rupture

- Proportional to aneurysm size
- 1966, Szilagyi compared < 6 cm to > 6 cm
 - Follow up rupture rate: 43 % vs. 20%
 - 5-year survival: 6 % vs. 48%
- 1977, Darling analyzed AAA autopsy, pts., 25% ruptured
 - < 4 cm: 10%
 - 4-7 cm: 25%
 - 7-10 cm: 46%
 - >10 cm: 61%

473 consecutive AAA


Risk for Rupture

	Annual	5-year
< 4 cm	0%	
4-5 cm	0.5-5%	2.5-25%
5-6 cm	3-15%	15-75%
6-7 cm	10-20%	50-100%
7-8 cm	20-40%	100%
>8 cm	30-50%	100%

Risk for Rupture

JAMA. 2013;309(8):806

Recommended intervals for Surveillance for small aneurysm

Country	Diameter, cm	Surveillance Interval, mo
England	3.0-4.4	12
England	4.5-5.4	3
	2.5-2.9	50
United States	3.0-3.4	36
	3.5-4.4	12
	4.5-5.4	6
Norway	3.0-3.9	24
	4.0-4.5	12
	4.5-5.5	3-6

Guidelines for Repair of AAA

- Repair for males with AAA > 5.5 cm (IB)
- Repair for females with AAA > 5.0 cm (IB)
- Aneurysm growth exceeds 1 cm/year (IB)

- Large aneurysm suitable for EVAR, open or endovascular repair is recommended (IA)
- Large aneurysm unsuitable for EVAR, open aortic repair is recommended (IC)

Surgical vs. Endovascular Repair

Open Repair Endovascular Repair

AAA Repair Options

OPEN REPAIR

First performed at 1951 Now involves placement of Dacron or PTFE graft

2-4% operative death rate5-10% complication rate

ENDOVASCULAR

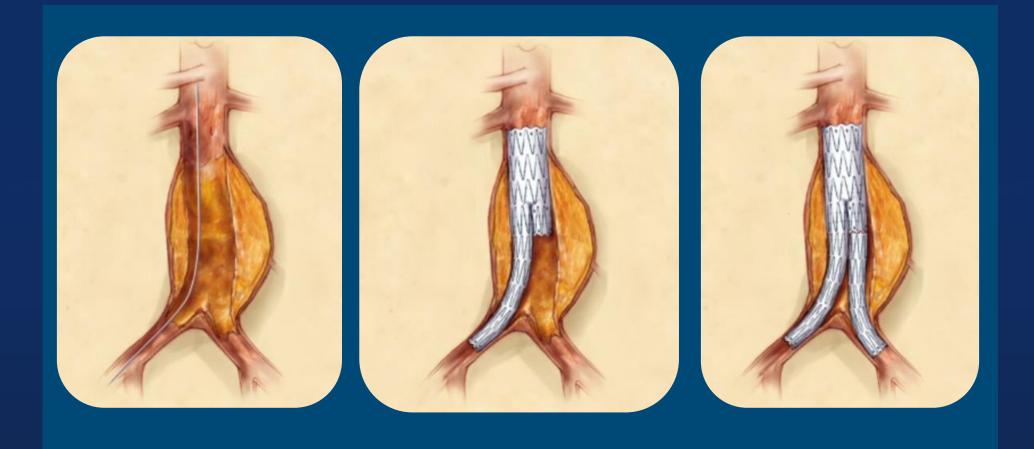
First performed at 1987 Less invasive, Through femoral vessels Only certain types of AAA

can be repaired

Elective Open Repair AAA

JAMA. 2009;302(18):2015

Elective Open Repair AAA

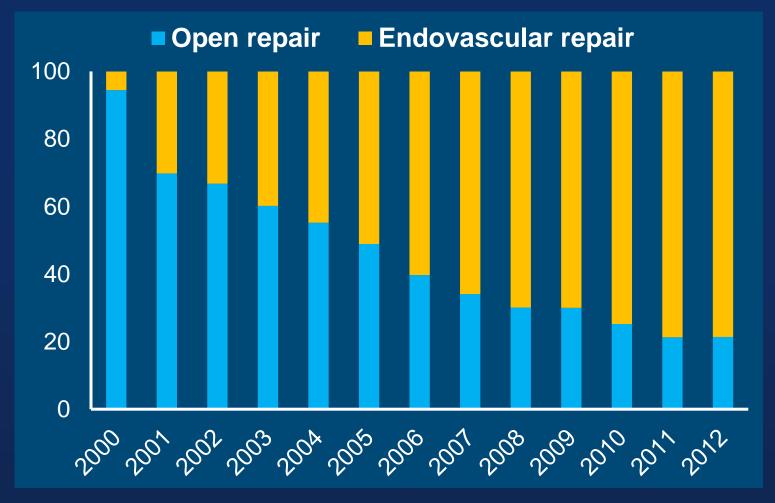

- Major surgical procedure Mortality 2% to 5%
- Complications
 Pseudoaneurysm
 Erectile dysfunction
 Aortoenteric fistula
 Graft thrombosis
 Graft infection

• Recovery period 6 weeks to 4 months

Endovascular Repair

JAMA. 2009;302(18):2015

EVAR, as an Alternative to OSR



- Avoidance of major abdominal surgery
- ✓ No cross-clamping of aorta
- Avoidance of surgery-specific complications (i.e. sexual dysfunction)
- ✓ Short LOS (1-3 days), no need for ICU
- ✓ Simple and Speedy recovery
- \checkmark Rx for surgical high-risk patients.

Annual Proportion of EVAR and Open Repairs in US

TCTAP2024

N Engl J Med 2014;371:2101-2108

Proportion of EVAR

Intact AAA

Country	N patients	%EVAR (95% CI)
Hungary	849	27.8% (24.8%-30.8%)
Norway	2095	32.0% (30.0%-34.0%)
Denmark	2239	33.9% (31.9%-35.9%)
Finland	461	46.2% (41.7%-50.8%)
Switzerland	2174	50.3% (48.2%-52.4%)
New Zealand	1214	51.7% (48.9%-54.5%)
Iceland	76	53.9% (42.7%-65.2%)
Sweden	3893	56.8% (55.3%-58.4%)
Germany	12572	68.2% (67.4%-69.0%)
Australia	6306	73.7% (72.6%-74.8%)
United States	11819	79.4% (78.7%-80.2%)

Circulation 2016;134:1948-1958

Proportion of EVAR

Ruptured AAA

Country	N patients	%EVAR (95% CI)
Denmark	748	5.1% (3.5%- 6.7%)
Hungary	187	7.5%(3.7%-11.3%)
Finland	192	9.9%(5.7%-14.1%)
New Zealand	220	10.9%(6.8%-15.0%)
Norway	334	11.7%(8.2%-15.1%)
Iceland	21	19.0%(2.3%-35.8%)
Switzerland	342	24.9% (20.3%-29.4%)
Sweden	1038	29.3% (26.5%-32.1%)
Germany	1444	31.2% (28.8%-33.6%)
Australia	1444	39.8% (37.2%-42.3%)
United States	1075	51.8% (48.8%-54.8%)

Circulation 2016;134:1948-1958

Anatomic exclusion of EVAR

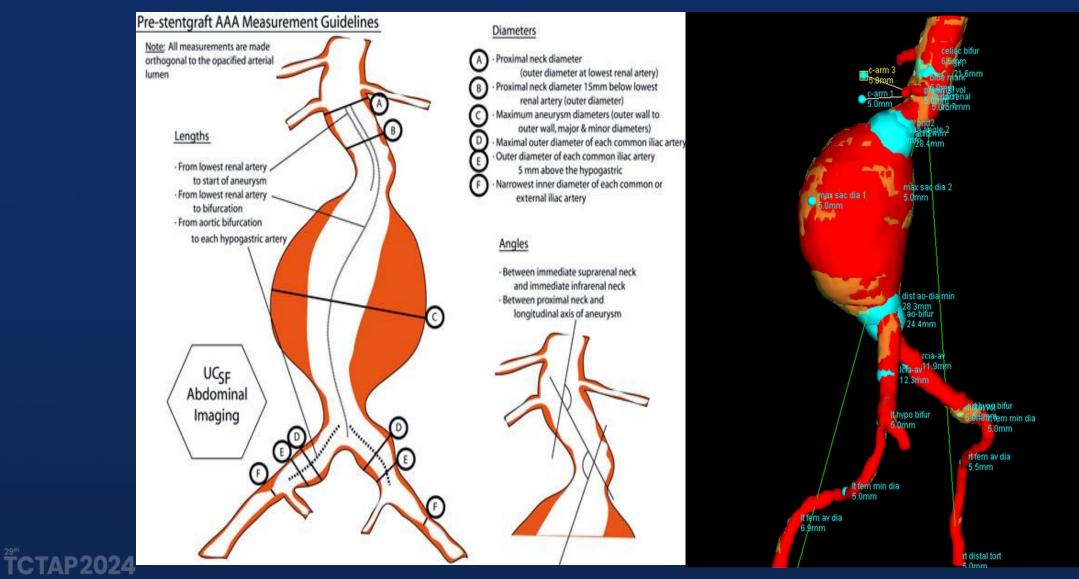
- Inadequate proximal landing zone too short, too wide, or too narrow neck severe angulation
- Inadequate distal landing zone
- Irregular calcification, plaque or thrombus

- Non-aneurysmal iliac length < 10mm
- Excessive tortuosity of vessel
- Too small, tortuous iliofemoral vessels.

Complications of EVAR

Early complication

- Graft thrombosis
- Acute limb ischemia
- Bowel ischemia
- Embolization of renal and mesenteric vessel
- Paraplegia


Late complication

- Late graft thrombosis
- Aneurysm
- Endograft wear
- Infection
- Distal migration

Pre-Stent Graft Measurement Guidelines

Technical Considerations

Device Description

Three Essential Components of endograft

1. Delivery system

Introducer sheath, Trocar, Deployment capsule and retractable cover

2. Attachment system

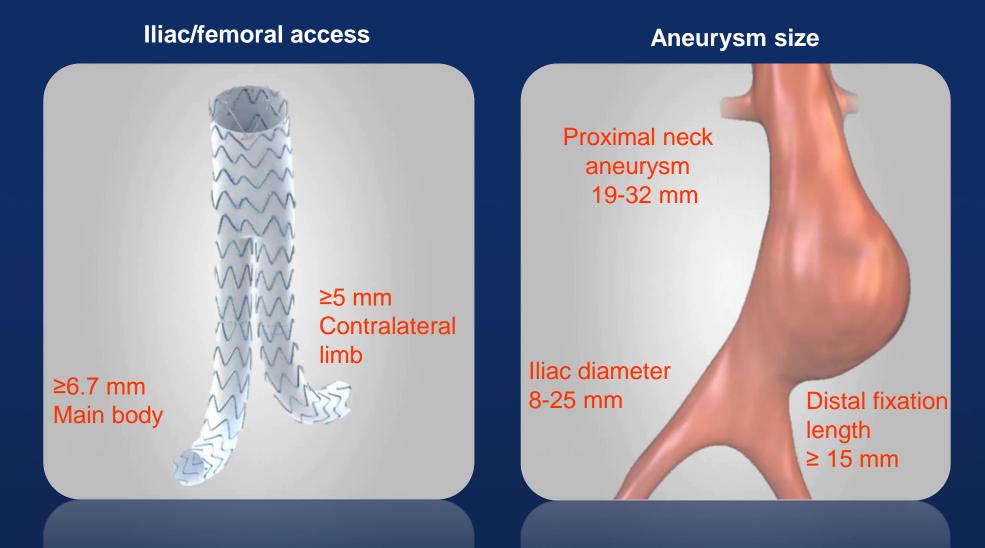
Stainless steel, Elgiloy, Tantalum or nitinol

3. The graft conduit

Polyester, PTFE (Polytetrafluoroethylene)

Company	Device	Body diameter	Outer diameter	Fixation location	Graft material	prox. bare- springs
Cook	Zenith	22-36	18F,20F, 22F	suprarenal	woven polyester	Yes
Vascutek Terumo	Anaconda	19.5-34	20F,23F	infrarenal	na	No
Endologix	Powerlink	25-28	21F	infrarenal	ePTFE	No
Medtronic	Endurant	23-36	18F,20F	suprarenal	woven polyester	Yes
Lombard Medical	Aorfix	24-31	22F	infrarenal	na	No
Gore	Excluder	23-31	20F,23F	infrarenal	ePTFE	No

FDA Approved EVAR Devices


All Current Generation EVAR Devices Can Be Used Via Percutaneous Approach!

Endurant II Stent Graft Indication

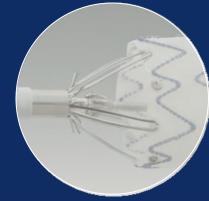
TCTAP2024

Endurant II Stent Graft Indication

- Proximal neck length
 ≥10 mm with non significant calcification,
 and/or non-significant
 thrombus
- ≤ 60° infrarenal angulation
 ≤ 45° suprarenal angulation
- Vessel diameter approximately 10-20% smaller than Endurant Stent Graft diameter


- Proximal necks length ≥15 mm with nonsignificant calcification, and/or non-significant thrombus
- ≤75° infrarenal angulation
 ≤60° suprarenal angulation
- Vessel diameter approximately 10-20% smaller than Endurant Stent Graft diameter

Design Features



The M-shaped proximal stent designed to enhance wall apposition, minimize the risk of in-folding and provide a 5mm sealing zone. The suprarenal stent anchoring pins provide secure fixation. Limb stent and stent spacing designed to prevent kinking.

Design Features

The tip sleeve covers the suprarenal pins to allow for positioning adjustments before tip release Rotation of the back-end wheel provides slow and controlled release of the suprarenal stent with anchoring pins You are in control at every step !

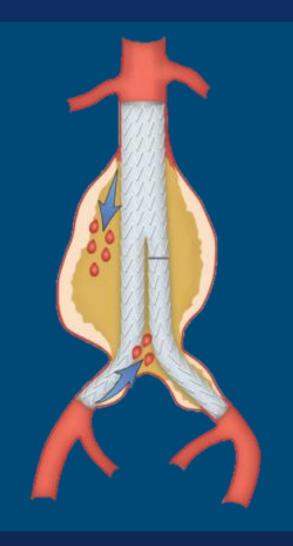
Complications of Endovascular Repair

- Arterial injury Iliac, Suprarenal
- Embolization Microembolization and renal failure
- Post Implant syndrome Back pain, fever without infection POD 0-7 Unknown etiology Incidence up to 50%
- Graft Limb Thrombosis Artery dissection Endograft kinking in Iliac A. Endograft kinking in Aneurysm Sac

Endoleaks

 Leak around proximal or distal attachment sites *Coined by White, et al, 1996* Persistent flow in aneurysm sac Incomplete exclusion

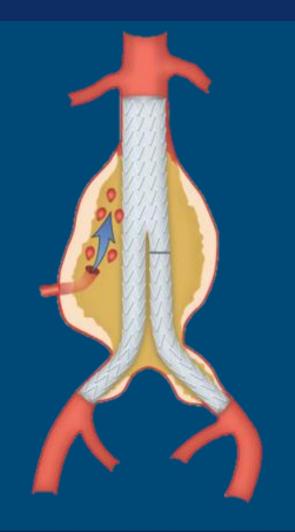
- Rates
 0 to 44%
- Risks
 Expansion
 Rupture



• Type I: Leak at graft attachment site

Ia: proximal attachment site Ib: distal attachment site

- Treatment failures
- Treatment to prevent the risk of rupture

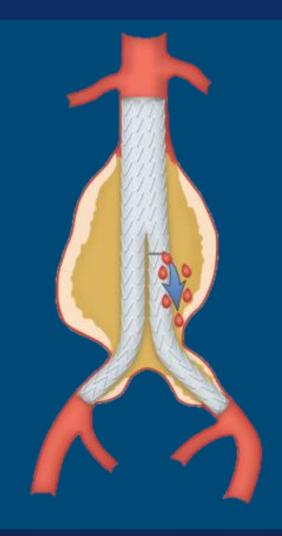


• Type II: Retrograde sac filling

IIa: single branch vessel IIb: multiple branch vessel

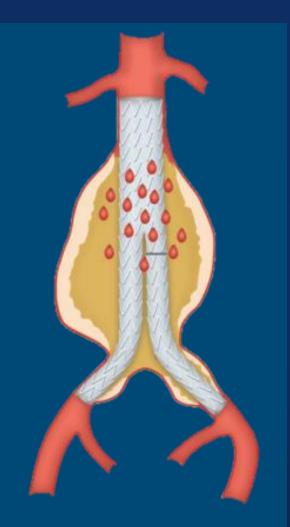
- Spontaneous seal in about 50% of cases
- Conservative management 'wait-and-watch'

Eur Heart J 2014 Nov 1;35(41);2873

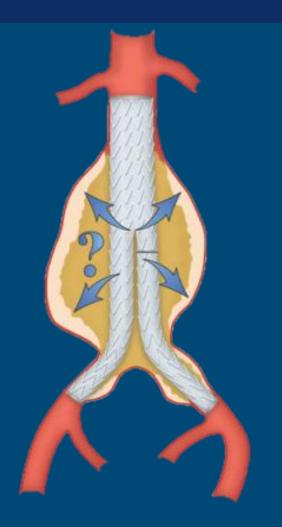


 Type III: Mechanical defect of stent

IIIa: separation of the modular componentsIIIb: fractures or holes in the endograft


- Regarded as treatment failures
- Treatment to prevent the risk of rupture

- Type IV: Leak through graft fabric
- Indirect and benign course
- Treatment required in cases of aneurysmal expansion



Eur Heart J 2014 Nov 1;35(41);2873

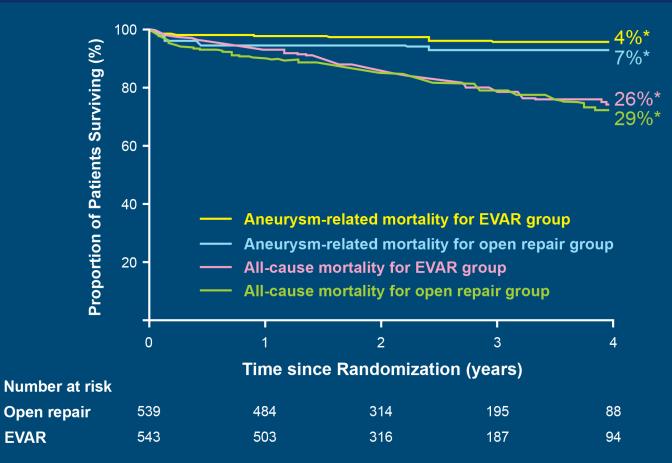
- Type V: Continued expansion without demonstrable leak
- Indirect and benign course
- Treatment required in cases of aneurysmal expansion

Eur Heart J 2014 Nov 1;35(41);2873

Independent Predictors of AAA Sac Enlargement After Repair

	HR	95% CI	<i>p</i> value
Endoleak	2.7	2.4-3.04	< 0.0001
Patient age ≥ 80	1.32	1.03-1.75	0.05
Aortic Neck Diameter > 32 mm	2.07	1.46-2.92	< 0.0001
Aortic neck angle > 60°	1.97	1.63-2.37	< 0.0001
Common iliac a diameter > 20 mm	1.46	1.21-1.76	< 0.0001

EVAR-1 Trial: Outcome

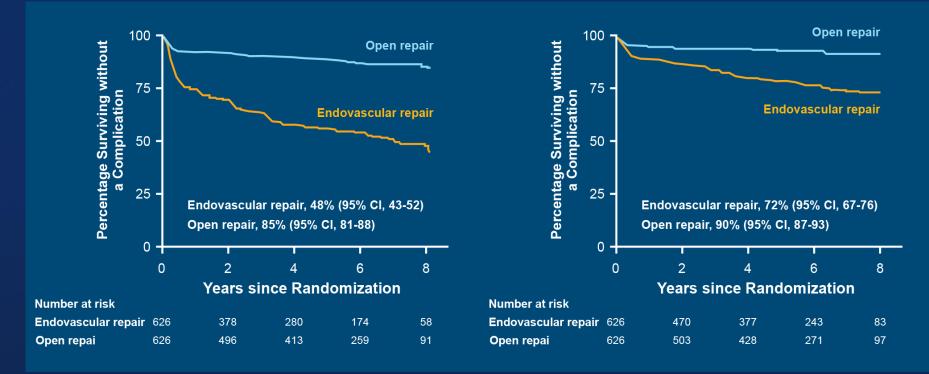

	EVAR	OPEN
30 Day Mortality	1.7 %	4.7 %
Secondary Interventions	9.8 %	5.8 %

Lancet 2004;364:843

EVAR 1 Trial: Mortality Results

* Mortality 4-year point estimates.

Lancet 2004;364:843



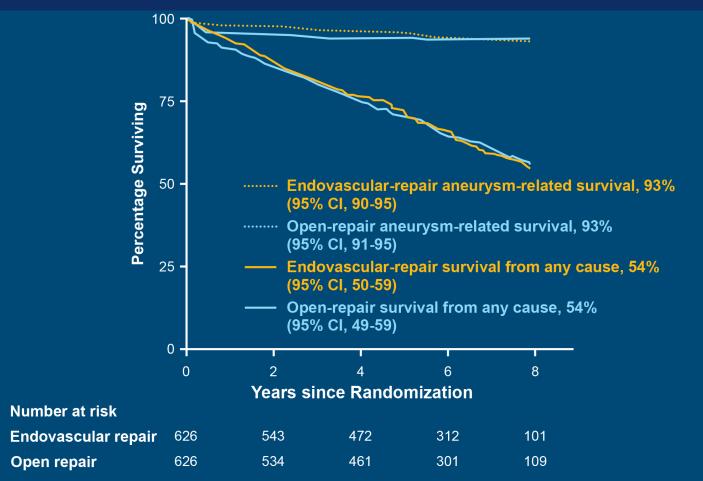
тстар2024

Long-term Outcomes of EVAR 1

Complication

Reintervention

Lancet 2004;364:843



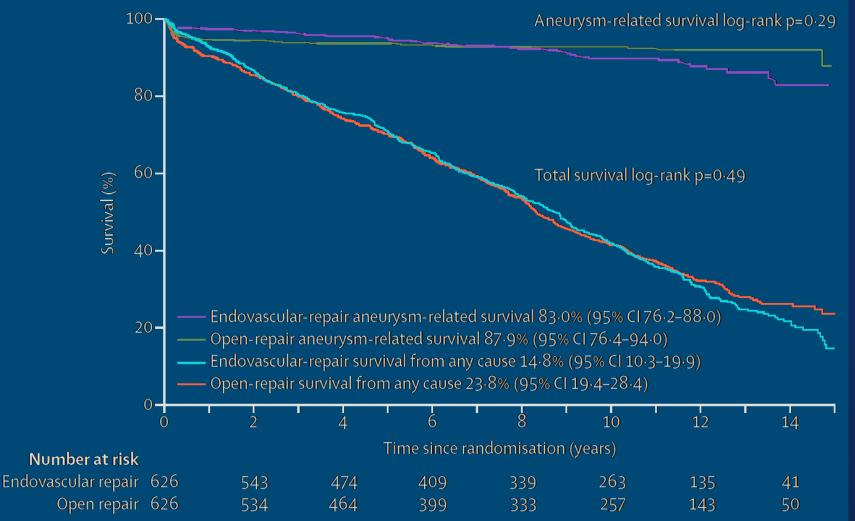
Long-term Outcomes of EVAR 1

Survivals

Lancet 200<u>4;364:843</u>

Long-term Outcomes of EVAR 1

Complication or Reintervention


	EVAR (n=626)	Open (n=626)	P value
Any death			
all patients	12.6(282)	2.5(78)	<0.001
Time since random 0-6 mo > 6 mo – 4yr > 4yr	48.7(132) 9.0(114) 5.1(36)	15.6(45) 1.1(18) 1.4(15)	<0.001 <0.001 <0.001
Aneurysm related death			
all patients	5.1(145)	1.7(55)	<0.001
Time since random 0-6 mo > 6 mo – 4yr > 4yr	22.9(66) 3.4(55) 2.4(24)	13.8(40) 0.3(6) 0.8(9)	0.007 <0.001 0.003

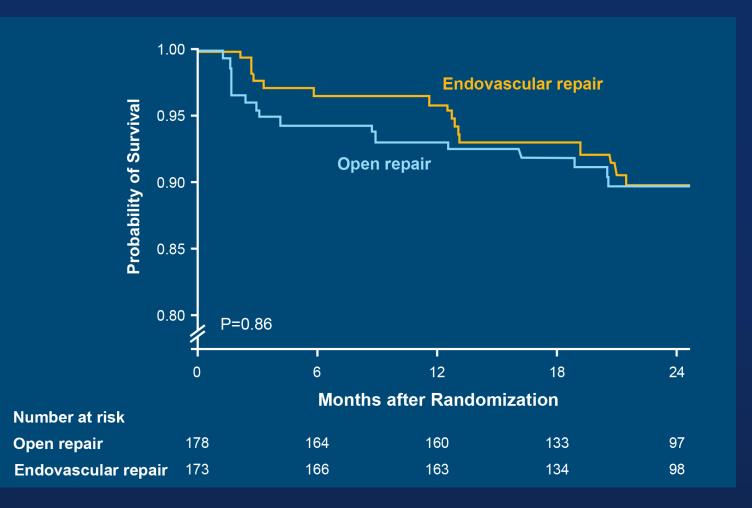
Lancet 2004;364:843

15 years follow-up of EVAR 1

TCTAP2024

Lancet 2016; 388: 2366-74

DREAM Trial


	EVAR	OPEN
30 Day Mortality	1.2 %	4.6 %
Combined Op Mortality & Complications	4.7 %	9.8 %

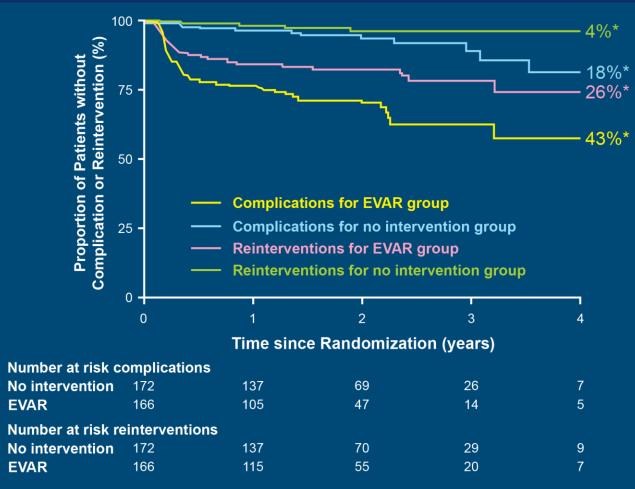
N Engl J Med 2004;351:1607

DREAM Trial: Mortality Results



N Engl J Med 2005;352:2398

EVAR 2 Trial: Survival Curve



TCTAP2024

Lancet 2005;365:2187

EVAR 2 Trial Complications and Reinterventions

* 4-year point estimates for patients with complications or reinterventions.

Small vs Large AAA

Clinical Outcomes following EVAR

	Small < 5.5 cm	Large > 5.5 cm
Type 1 Endoleak	1.4 %	6.4 %
Migration	4.4 %	13 %
Conversion	1.4 %	8.2 %
Aneurysm Related Death	1.5 %	6.1 %
Survival (24 months)	86 %	71 %

J Vasc Surg 2003;37:1206

Conclusions Regarding EVAR for Small vs Large AAA

- Outcomes of EVAR influenced by AAA size
- Differences important in choosing observation or repair
- It is important to balance risk for rupture with size dependent outcome: results of trials pending

Outcomes of OVER Trial

	EVAR (n=444)	Open Repair (n=437)	P value
All cause mortality	31(7.0)	43(9.8)	0.13
Before AAA repair Within 30d after repair Within 30d after repair or during hospitalization	2(0.5) 1(0.2) 2(0.5)	1(0.2) 10(2.3) 13(3.0)	>0.99 0.006 0.004
- AAA diameter < 5.5cm - AAA diameter >5.5cm After 30d or hospitalization	1(0.5) 1(0.4) 27(6.1)	5(2.6) <mark>8(3.2)</mark> 29(6.6)	0.10 <mark>0.02</mark> 0.74

Outcomes of OVER Trial

All-cause mortality at 2 years

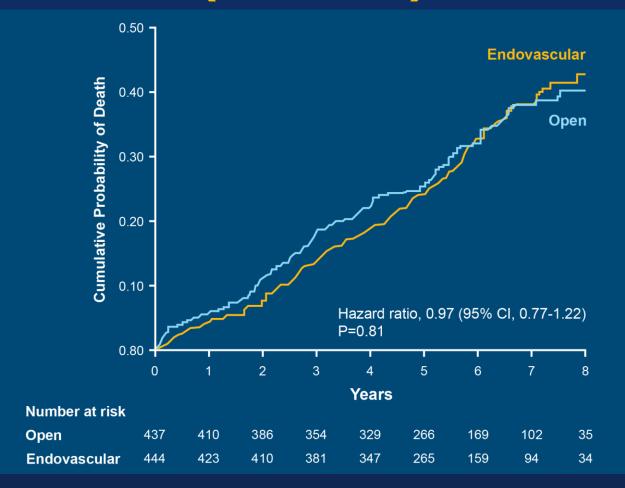
hazard ratio,0.7;95% confidence interval, 0.4-1.1; log-rank P=0.13

JAMA. 2009;302(14):1535

Long-term Comparison of Endovascular and Open Repair of Abdominal Aortic Aneurysm (OVER trial)

Mortality: Endovascular vs. Open Repair	HR	95% CI	<i>P</i> Value
At 2 Years	0.63	0.40-0.98	0.04
At 3 Years	0.72	0.51-1.00	0.05
At 8 Years ^a	0.97	0.77-1.22	0.81

^a Kaplan-Meier estimate.


EVAR, Lower mortality through 3 years, Long-term survival is similar

N Engl J Med. 2012;367:1988

Long-term Comparison of Endovascular and Open Repair of Abdominal Aortic Aneurysm (OVER trial)

N Engl J Med. 2012;367:1988

Open vs. Endovascular Stent Graft Repair of AAA: A Meta-analysis of Randomized Trials

Pooled data from 6 trials including 2,899 AAA patients treated either with EVAR (n = 1,470) or open surgery (n = 1,429)

At 30 days, all-cause mortality Lower with EVAR (RR 0.35; 95% CI 0.19-0.64)

No difference at long-term follow-up (RR 0.99; 95% CI 0.85-1.15)

EVAR survival advantage, Early and Intermediate follow-up Similar mortality in the long term

JACC Intv. 2012;5:1071

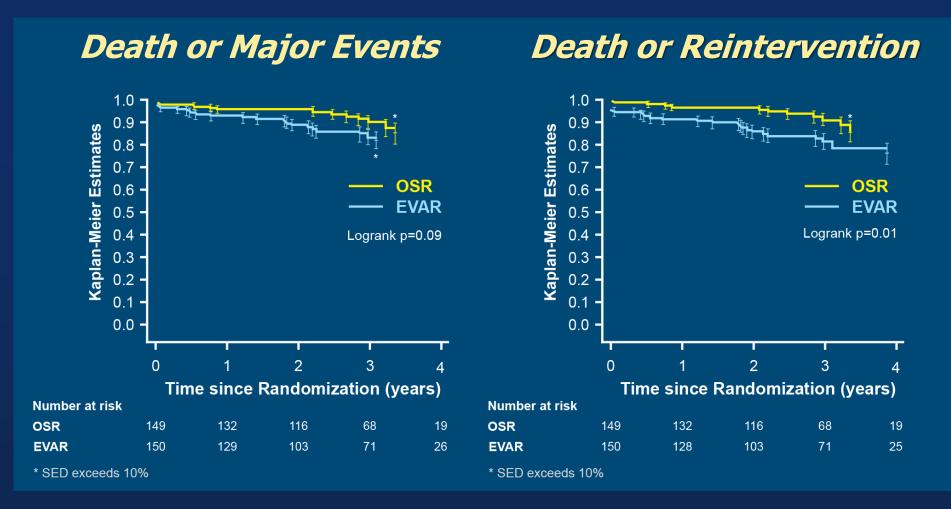
A Randomized Controlled Trial of EVAR vs. Open Surgery for AAA in Low- to Moderate-Risk Patients

299 patients in the ACE trial

(Anévrysme de l'aorte abdominale: Chirurgie versus Endoprothèse) trial.

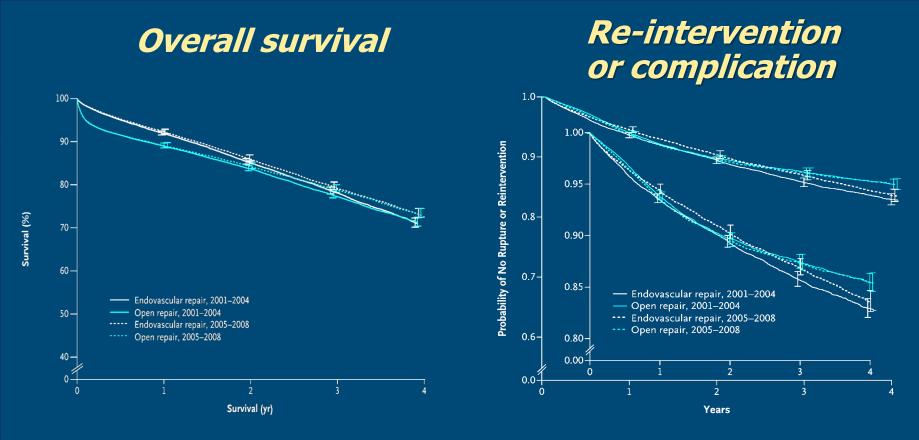
Median 3-Year Follow-up	Open Repair (n = 149)	EVAR (n = 150)	<i>p</i> Value
Death	8%	11.3%	NS
Major Adverse Events	4%	6.7%	NS
Reintervention	2.7%	16%	< 0.0001

Similar long-term mortality and complications. Higher reintervention with EVAR


J Vasc Surg 2011;53:1167.

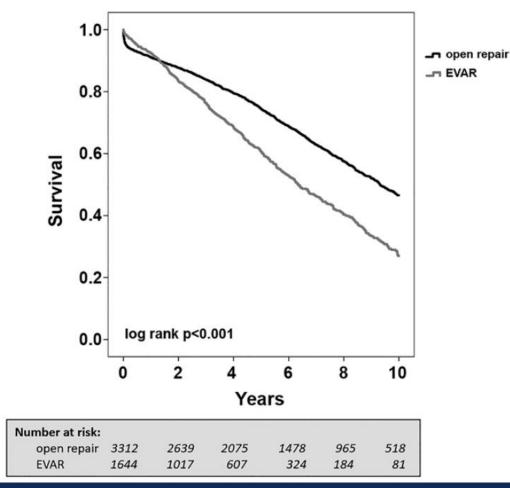
A Randomized Controlled Trial of EVAR vs. Open Surgery for AAA in Low- to Moderate-Risk Patients

ТСТАР2024


Long-Term Outcomes of Abdominal Aortic Aneurysm in the Medicare Population

Similar long-term mortality rate, but higher risk of re-intervention or hospitalization for complication with EVAR NEJM 2015;373:328

Long-Term Outcomes of Abdominal Aortic Aneurysm in the Medicare Population


The outcomes of EVAR have been improving over time

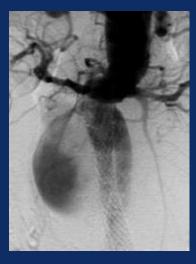
Population based 10 year survival in Finland

Higher 10-year mortality in EVAR, BUT may have been exaggerated by patient selection *Circulation 2017;136:1726-1734*

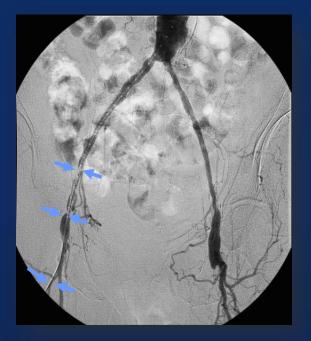
TAP2024

Outcome for sex in EVAR

A	Repair date	30-day mortality (n/N)		Estimate (95% CI)	% weight
Women					
Lowry et al (2016) ³²	2006–15	57/2304		2·47 (1·91–3·19)	33.89
Nevidomskyte et al (2016) ²⁵	2010-13	5/160	•	3·13 (1·31–7·29)	2.95
Chung et al (2015) ³¹	2003-12	2/121	•	1.65 (0.41–6.37)	1.20
Lo et al (2013) ²⁷	2003-11	5/408		1·23 (0·51–2·91)	3.01
Mani et al (2013) ²⁸	2006–10	10/329		3.04 (1.64–5.56)	5.91
Mehta et al (2012) ²⁹	2002-09	11/344	• • • • • • • • • • • • • • • • • • •	3·20 (1·78–5·68)	6.49
Powell et al (2017) ⁵	2000-09	1/77		1·30 (0·18−8·64)	0.60
Schermerhorn et al (2012) ³⁰	2008	77/3657		2·11 (1·69–2·62)	45.95
Overall women (I ² =0.00%)			\Leftrightarrow	2.31 (1.99-2.68)) 100.00
Men					
Lowry et al (2016) ³²	2006–15	283/18215	→	1.55 (1.38–1.74)	22.81
Nevidomskyte et al (2016) ²⁵	2010-13	4/696	<u> </u>	0.57 (0.22–1.52)	3.67
Chung et al (2015) ³¹	2003-12	11/617	•	1.78 (0.99–3.19)	7.95
Lo et al (2013) ²⁷	2003-11	15/1660		0.90 (0.55–1.49)	9.75
Mani et al (2013) ²⁸	2006–10	39/1669		2·34 (1·71–3·18)	15.45
Mehta et al (2012) ²⁹	2002-09	12/1248		0.96 (0.55–1.69)	8.47
Powell et al (2017)⁵	2000-09	15/1312 —	←	1·14 (0·69–1·89)	9.74
Schermerhorn et al (2012) ³⁰	2008	203/15590		1·30 (1·14–1·49)	22.16
Overall men (I²=69∙59%)			$\langle \rangle$	1.37 (1.12-1.68)	100.00
		0	2 4 6 30-day mortality (%)	8	


Higher 30-day mortality in women

Aortic Endografts Current Limitations


- Proximal neck diameters 18-32 mm
- Proximal neck lengths (supra and infra renal attachment)
 5-15 mm
- Iliac artery size for delivery 6-9 mm
- Iliac artery attachment site diameter 8-20 mm
- Angle of neck to aneurysm <60°

Limitations of Current EVAR Devices

Access vessel morphology remain a limiting factor for EVAR application despite device improvements

Current delivery system profiles (O. D.)

 \approx 7mm access vessel required

6-19% of EVAR candidates are excluded due to small, tortuous and/or calcified access vessels

Eur J Vascular Endovascular Surgery 1999; 17:507 J Vascular Surgery, 2001; 34:1050 J Endovascular Therapy, 2004; 11:33

Limitations of Current EVAR Devices

Deployment accuracy remains a problem despite major advancements in imaging techniques:

• Proximal placement accuracy indicators

Event	EUROSTAR	DREAM	EVAR1
Unintentional Renal Artery Coverage		1.8%	
Acute Proximal Extension Utilization Rate	3.9%		2.8%

• Distal placement accuracy indicators

Event	EUROSTAR	DREAM	EVAR1
Unintentional Internal Iliac Artery Coverage		5.7%	
Acute Distal Extension Utilization Rate	22.2%		16.6%

N Engl J Med, 2004; 351:1607 Lancet, 2005; 365:2179 J Vascular Surgery, 2007; 45:79

Long-term Survival After Open vs EVAR of Intact AAA Among Medicare Beneficiaries

Retrospective analysis of 703 patients who received EVAR vs 3,826 who received surgery between 2003 and 2007.

2.6-Year Mean Follow-up, Open Repair vs. EVAR	Adjusted HR (95% CI)	P Value
All-Cause Mortality	1.24 (1.05-1.47)	0.01
AAA-Specific Mortality	4.37 (2.51-7.66)	< 0.001

Early survival advantage for EVAR persisted

JAMA. 2012;307:1621

Results of EVAR with General, Regional and Local/Monitored Anesthesia Care

Analysis of 6,009 procedures from the National Surgical Quality Improvement Program database.

General anesthesia Increased pulmonary morbidity Increases in length of stay of 10% and 20% Does not increase 30-day mortality

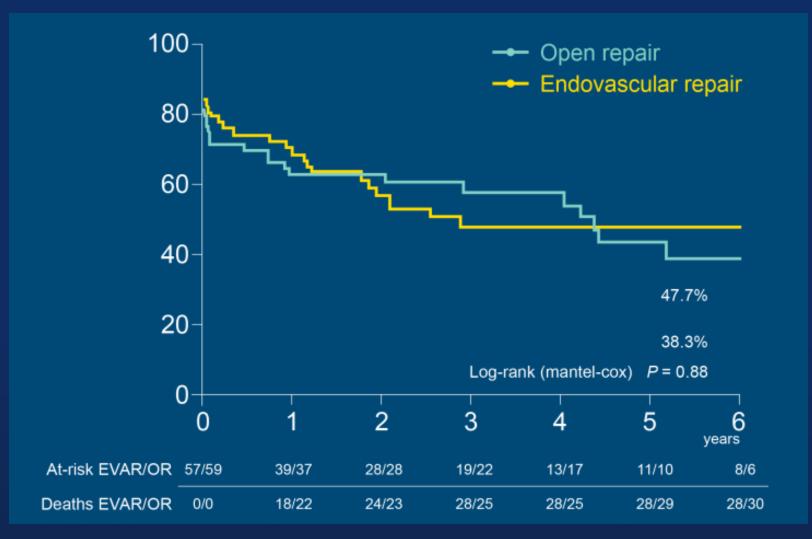
Less-invasive anesthetic techniques may limit postoperative complications decrease the overall costs of EVAR

J Vasc Surg. 2011 Nov;54(5):1273

Ruptured AAA

 \checkmark With a RAAA of which 116 could be randomized.

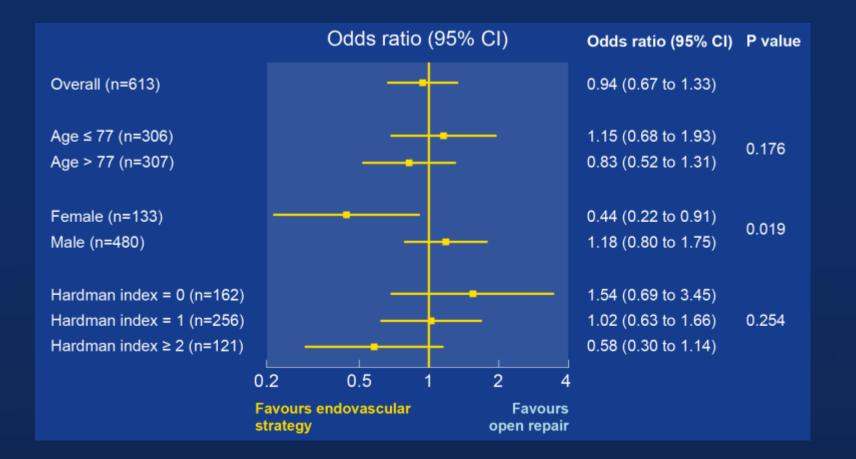
 Primary endpoint Death and severe complications at 30 days.
 EVAR 42% vs OR 47% (ARR = 5.4%; 95% CI : -13% to +23%)


 The 30-day mortality EVAR 21% vs OR 25% (ARR = 4.4%; 95% CI:-11% to +20%)

Ann Surg 2013;258: 248

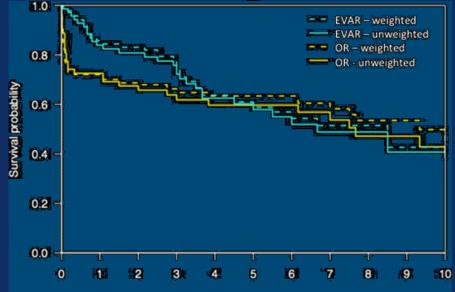
Ruptured AAA

Ann Surg 2013;258: 248


IMPROVE randomized trial

- ✓ Now ongoing
- ✓ Suspected ruptured AAA
- ✓ EVAR versus OR
- 613 eligible patients with clinical diagnosis of ruptured aneurysm
- 316 patients were randomized to EVAR (275 confirmed, 174 anatomically suitable)
- 297 patients were randomized to Open Repair (261 confirmed)

30 day mortality and subgroup analysis


BMJ 2014;348:f7661

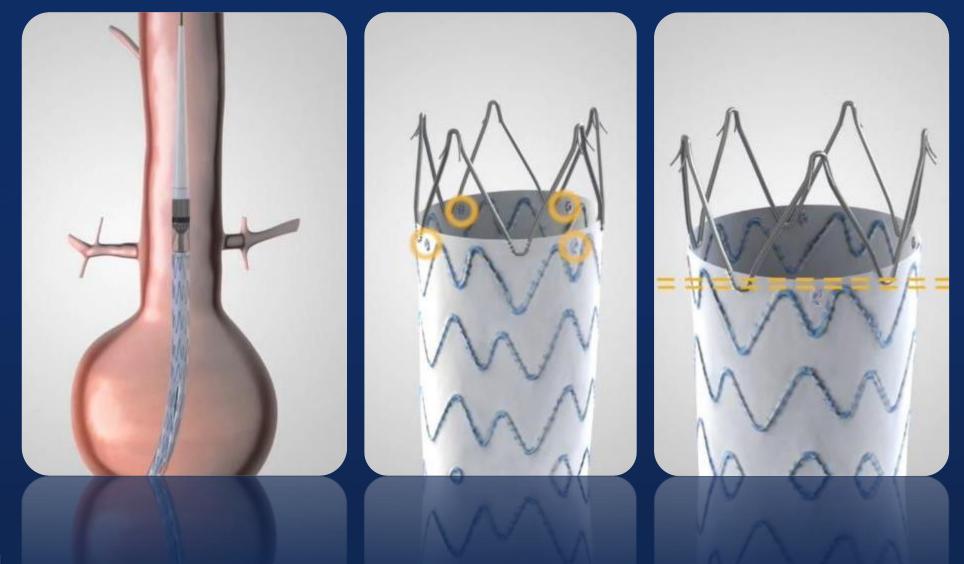
EVAR for Mycotic AAA

Follow-up time (years)

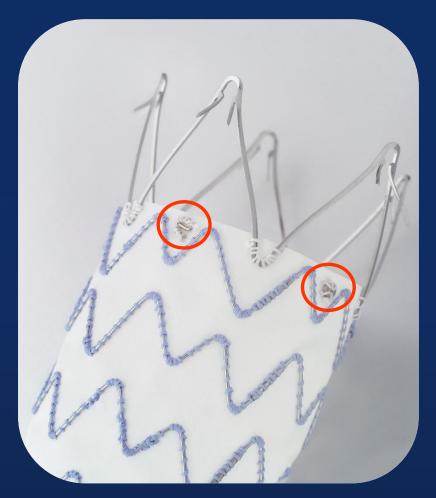
	3-months	1-year	5-years	10-years
OR	72.8(65.9-80.5)	72.1(65.1-79.8)	63.4(55.5-72.5)	38.4(26.7-55.1)
EVAR	96.9(93.7-99.9)	85.8(79.4-92.6)	58.8(49.4-70.0)	42.7(31.8-57.2)
P-value	<0.001	0.110	0.687	0.782

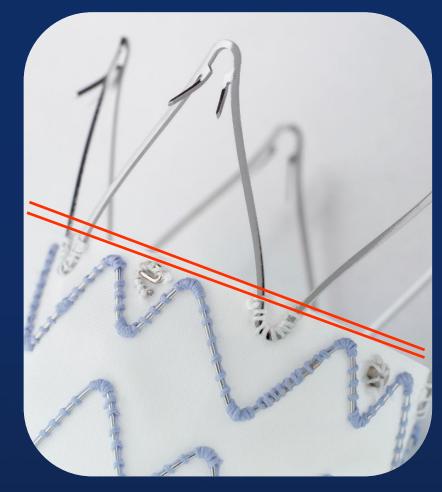
EVAR, Lower mortality for 3-months, Long-term survival is similar

Circulation 2016;134:1822-1832



Procedure of EVAR

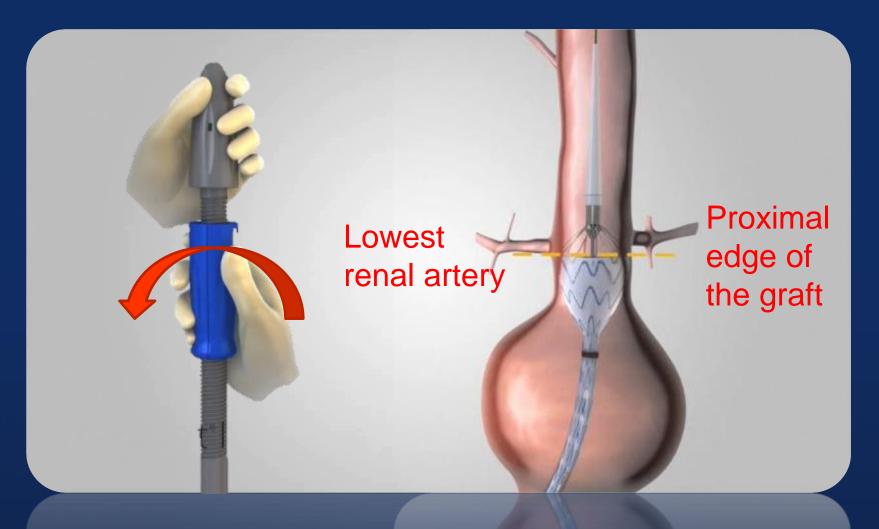

Match the proximal edge



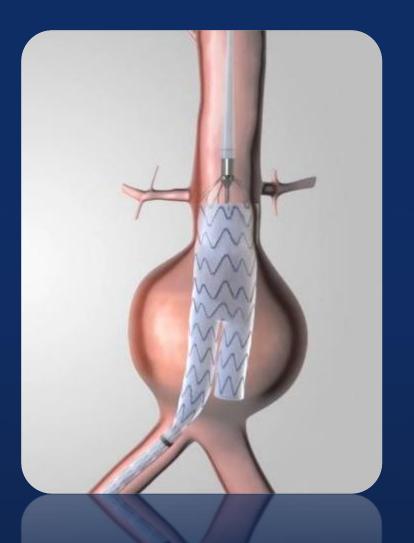
^{20*}**TCTAP2024**

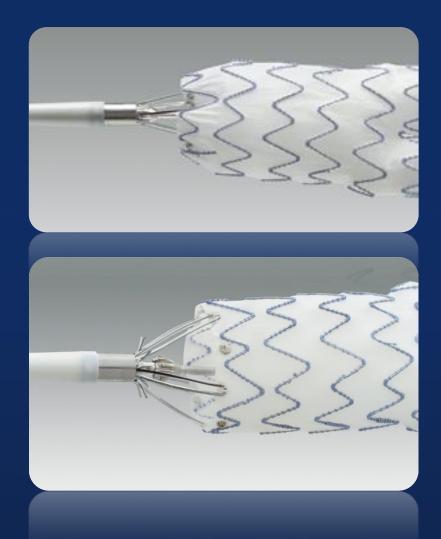
Match the proximal edge

4 proximal radiopaque markers

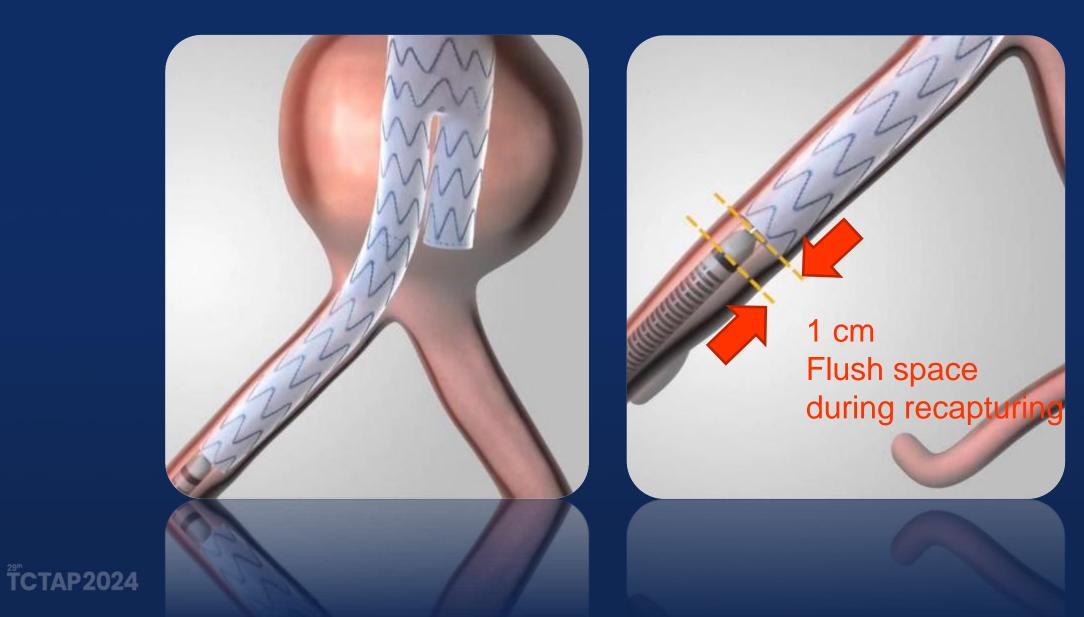


Proximal edge of stent graft 1mm above proximal markers

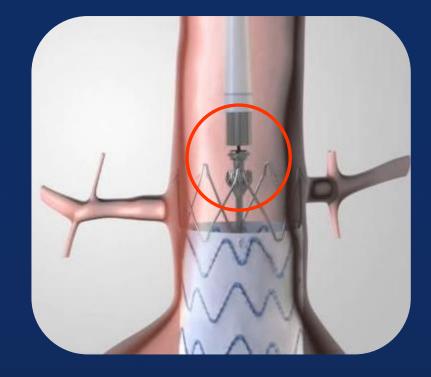

Match the proximal edge



Deploy the stent

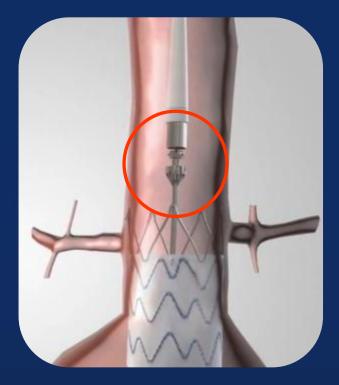


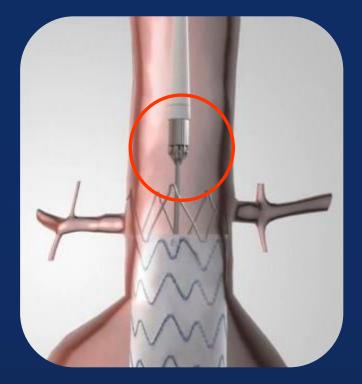



Deploy the ipsilateral limb stent

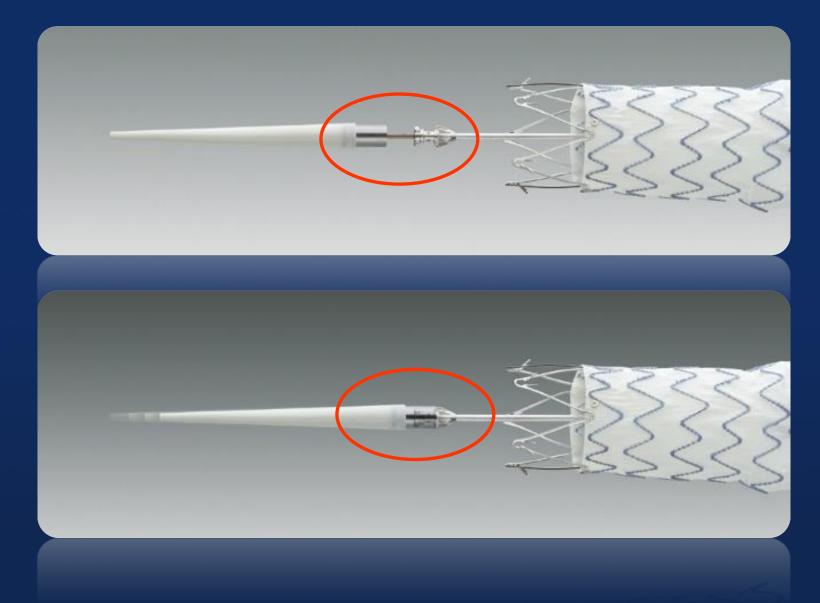
CVRF

Release the suprarenal stent

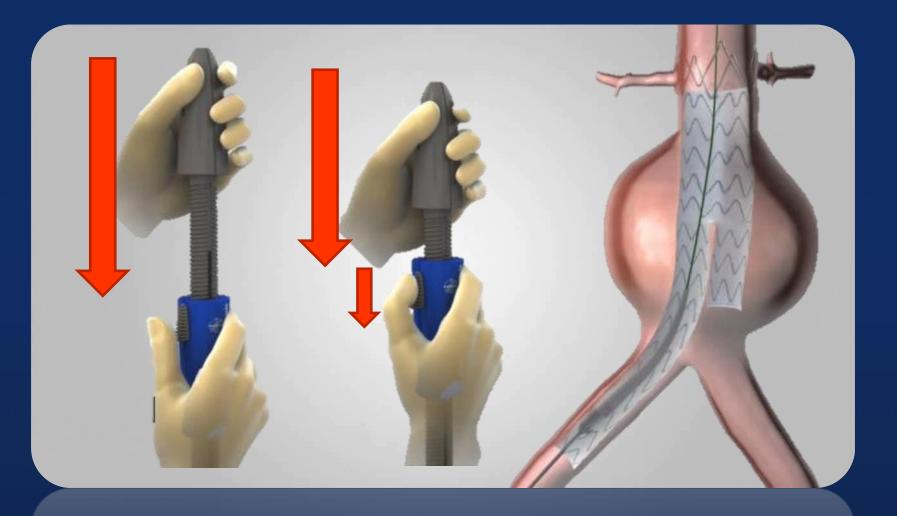




Recapturing the spindle

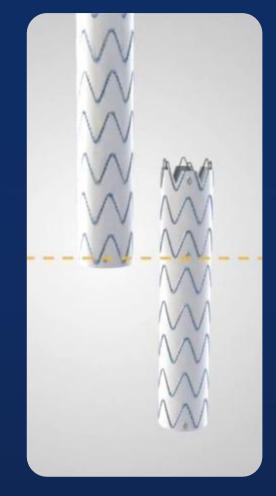


Recapturing the spindle

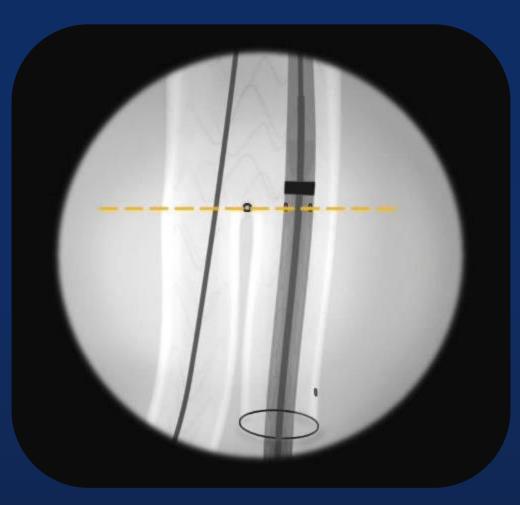


CVRF

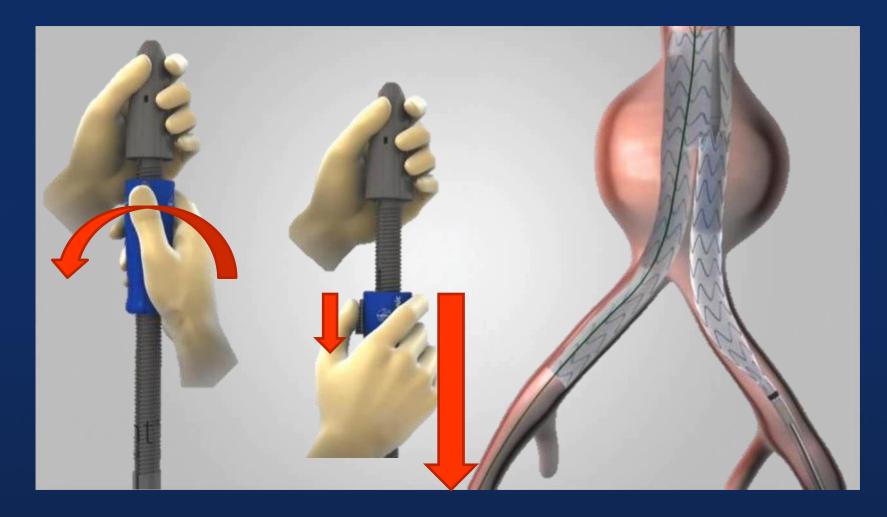
Deploy the ipsilateral limb stent

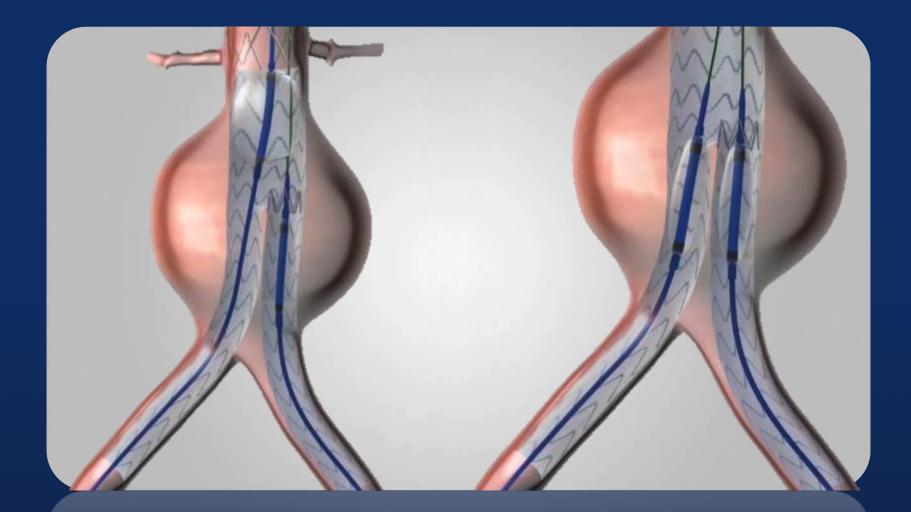


тстар2024



Flower Divider TCTAP2024 Marker Contralateral gate marker


Overlap marker

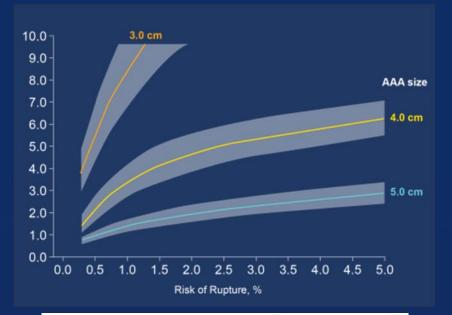


Ballooning the stent

Updated Guidline EVAR

Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Guidelines for Repair of AAA


- Repair for males with AAA > 5.5 cm (IB)
- Repair for females with AAA > 5.0 cm (IB)
- Aneurysm growth exceeds 1 cm/year (IB)

- Large aneurysm suitable for EVAR, open or endovascular repair is recommended (IA)
- Large aneurysm unsuitable for EVAR, open aortic repair is recommended (IC)

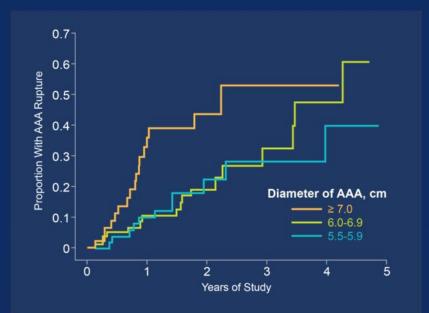

Importance of AAA: Risk of Rupture

Table 1. Annual Risk of Rupture of Abdominal Aortic Aneurysms.*		
Aneurysm Size	1-yr Incidence of Rupture	
	%	
<5.5 cm	≤1.0	
5.5–5.9 cm	9.4	
6.0–6.9 cm	10.2	
≥7.0 cm	32.5	

* Data are from Powell et al.,³³ Lederle et al.,³⁴ and Lederle et al.³⁵ The overwhelming majority of study participants were men.

тстар2024

JAMA. RESCAN trial 2013;309(8):806 NEJM. 2014; 371:2101-8.

National screening policy

- England, Sweden: one-time screening of all men 65 years of age or older
- U.S Preventive Services Task Force:
 ①흡연경험이 있는 65~75세 남성에는 초음파 복부대동맥류 검사를 1회 받도 록 권고한다.

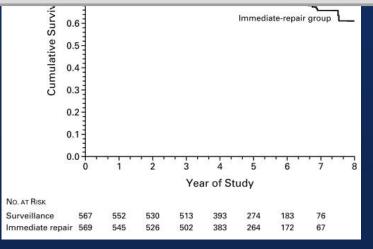
②흡연경험이 없는 65~75세 남성에는 전체가 아닌 임상의사가 선별한 남성 에게만 복부대동맥류 검사를 실시한다. 검사 대상의 선택 기준은 득실을 따져 서 평가하고, 환자 기왕력과 가족력, 다른 위험인자도 고려한다

③흡연경험이 있는 65~75세 여성에는 복부대동맥류 검사의 득실을 평가해 야 할 근가 현재로서는 부족하다.

④흡연경험이 없는 여성에게는 정기 검사가 불필요하다.

Size to treat? Small Aneurysm RCTs


UKSAT (4 – 5.5cm) (USG surveillance)


- 1090 randomized (17% female)
- Operative mortality of 5.8% in immediate repair group

ADAM VA study (4 – 5.5cm) (CT scans)

- 1136 randomized (mean f/u 4.9 yrs)
- Operative mortality of 2.7% in immediate repair group

Treatment size should be **5.5cm for males** (<1% per year annual rupture rate for AAA <5.5cm in males) **Women rupture rate higher (4X) at same size**; perhaps treat at 5 or even 4.5cm diameter

NEJM 2002, 9;346 (19), B J Surg 2007, 94(6)

Surveillance

Class I

2. Patients with infrarenal or juxtarenal AAAs measuring 4.0 to 5.4 cm in diameter should be monitored by ultrasound or CT scans every 6 to 12 months to detect expansion. *(Level of Evidence: A)*

Class Ila

3. In patients with AAAs smaller than 4.0 cm in diameter, monitoring by ultrasound examination every 2 to 3 years is reasonable. *(Level of Evidence: B)*

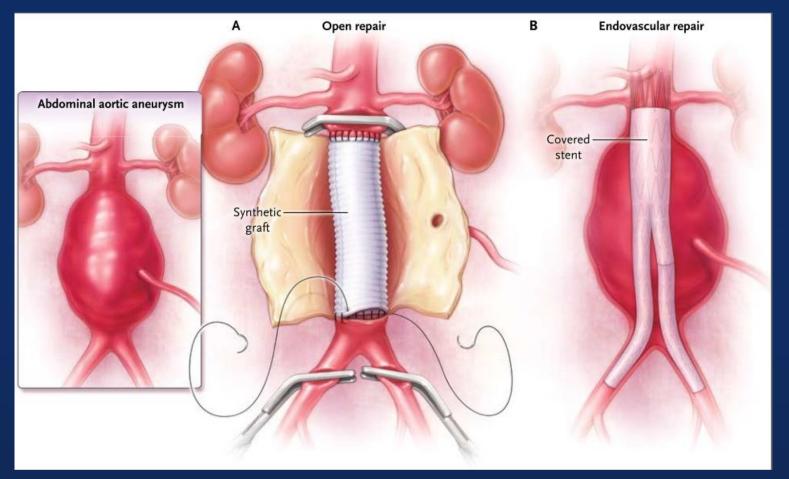
Recommendations	Class ^a	Level ^b	Ref. ^c
In patients with abdominal aortic diameter of 25–29 mm, new ultrasound imaging should be considered 4 years later.	lla	в	367
In patients with small (30–55 mm) AAAs, the following time interval for imaging should be considered: ^d • every 3 years for AAA of 30–39 mm diameter. • every 2 years for AAA of 40–44 mm diameter. • every year for AAA >45 mm ^e diameter.	lla	в	365

Indications for Aneurysm Repair

Recommendations	Class*	Level ^b	Ref. ^c	2014 ESC guideline
In patients with suspected ruptu	re 👘			
of AAA, immediate abdominal		С		
ultrasound or CT In case of rupture 46 ((경피적	혈관내 스템	비트 -0	식 설치를	늘)의 세부인정기준)
in case of rapears				부 인정기준은 다음과 같이함.
In case of sympto -다음 -	2-11 - 12	17 24	이 같기 가지	
ruptured AAA u				
indicated. I. 적중공	198			
In case of sympto 가. 대통				
	동맥류			
either open or er ① 흉부대용	맥류 직경 5	5,5~6,0cn	n, 복부대	동맥류 직경 5.0cm이상
repair is recomm ② 4-5cm어	서 6개월에 (0.5cm이공	날 크기가	증가하거나 관련된 임상증상이 있는 경우
(0) 7	성 동맥류 혹			
AAA repair is indic	동맥 박리증		- 1.43-310 - 2	
- /////				
· · · · · · · · · · · · · · · · · · ·			인 경우(급	성)/또는 6cm이상인 경우(만성)
exceeds I	하의 직경이니			
If a large aneurysm - 분지된 혈	관의 허혈성	증후가 9	있는 경우	
suitable for EVAR, - 박리가 진	행되는 경우			
	obstruction			
recommended in p 나, 분자	협과			
acceptable surgical		느거서의	토(저)매르	의 경우 (Iliac artery, renal artery 등)
If a large aneurysm	시의/ㅋㅠ ㅗ 저매ㄹ ㅎㅇ	는 기종 d 청고(피)	∋\⊝/⊐π ലോ ⊐ാറ	
unsuitable for ÉVAK, open aortic 제품을 호텔 형과 파역이 계호				
repair is recommended.				
In patients with asymptomatic				
AAA who are unfit for open	llb	в	388,399	
repair, EVAR, along with best medical treatment, may be		100		
considered. ^g				

TCTAP2024

Repair; Open or EVAR?

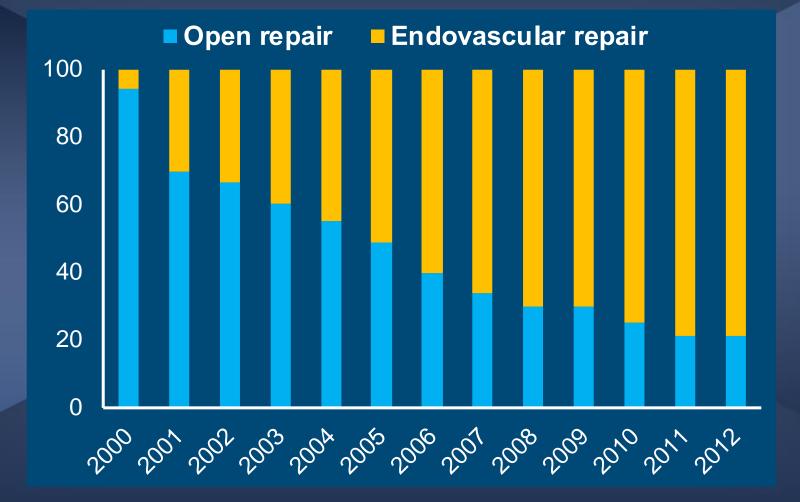

2005 Recommendations	2011 Focused Update Recommendations	Comments
Class I		
Open repair of infrarenal AAA and/or common iliac aneurysms is indicated in patients who are good or average surgical candidates. (Level of Evidence: B)	 Open or endovascular repair of infrarenal AAAs and/or common iliac aneurysms is indicated in patients who are good surgical candidates (56,57). (Level of Evidence: A) 	Modified recommendation (endovascula repair incorporated from 2005 Class Ill recommendation [see below*]; level of evidence changed from B to A).
Periodic long-term surveillance imaging should be performed to monitor for an endoleak, to document shrinkage or stability of the excluded aneurysm sac, and to determine the need for further intervention in patients who have undergone endovascular repair of infrarenal aortic and/or iliac aneurysms. <i>(Level of Evidence: B)</i>	2. Periodic long-term surveillance imaging should be performed to monitor for endoleak, confirm graft position, document shrinkage or stability of the excluded aneurysm sac, and determine the need for further intervention in patients who have undergone endovascular repair of infrarenal aortic and/or iliac aneurysms (56,58). (Level of Evidence: A)	Modified recommendation (level of evidence changed from B to A).
Class IIa		
Endovascular repair of infrarenal aortic and/or common iliac aneurysms is reasonable in patients at high risk of complications from open operations because of cardiopulmonary or other associated diseases. (Level of Evidence: B)		Deleted recommendation (no longer current).
	 Open aneurysm repair is reasonable to perform in patients who are good surgical candidates but who cannot comply with the periodic long-term surveillance required after endovascular repair. (Level of Evidence: C) 	New recommendation
Class IIb		
Endovascular repair of infrarenal aortic and/or common iliac aneurysms may be considered in patients at low or average surgical risk. (Level of Evidence: B)		Deleted recommendation (endovascula repair incorporated into 2011 Class I, #1 [see above*]).
	 Endovascular repair of infrarenal aortic aneurysms in patients who are at high surgical or anesthetic risk as determined by the presence of coexisting severe cardiac, pulmonary, and/or renal disease is of uncertain effectiveness (59). (Level of Evidence: B) 	New recommendation

AAA indicates abdominal aortic aneurysm.

²⁹ TCTAP2024

Same goal, completely different strategy

Open repair since 1950s 30-d mortality 4-5% for 20yrs Hospital stay; 9 days Full recovery weeks to months

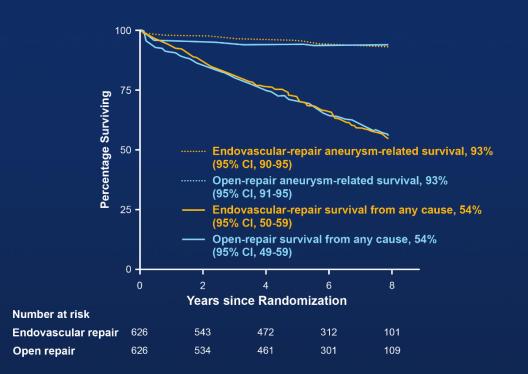

Endovascular repair since 1987

30-d mortality ~1% Hospital stay; 3 days Full recovery days to weeks

ТСТАР2024

Annual Proportion of EVAR and Open Repairs in US

TCTAP2024 CARENTASSCILLAR SUN TCTAP20 N Engl J Med 2014;371:2101-2108



COVRF

RCTs; Elective Open Repair vs. EVAR

Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial

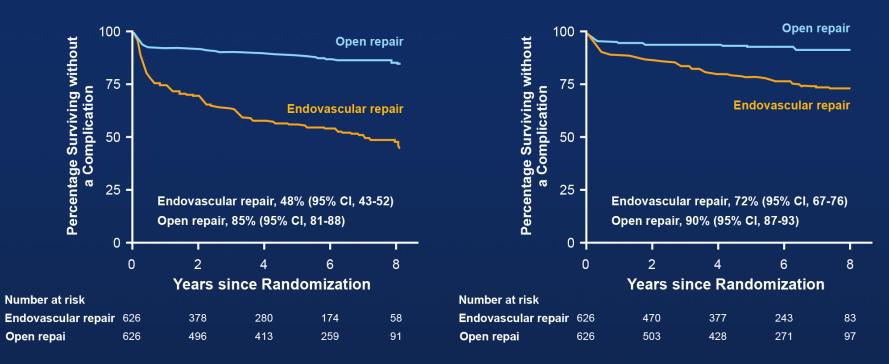
EVAR trial participants*

- 1999-2004, 37 centers in UK 1252 patients aged ≥60, AAA ≥5.5cm, fit for open of EVAR
- Median FU 6 yrs
- EVAR significantly decreased perioperative
- No differences in all-cause and AAA-related mortality

Lancet 2004;364:843-48

Lancet 2005;365:2179-86

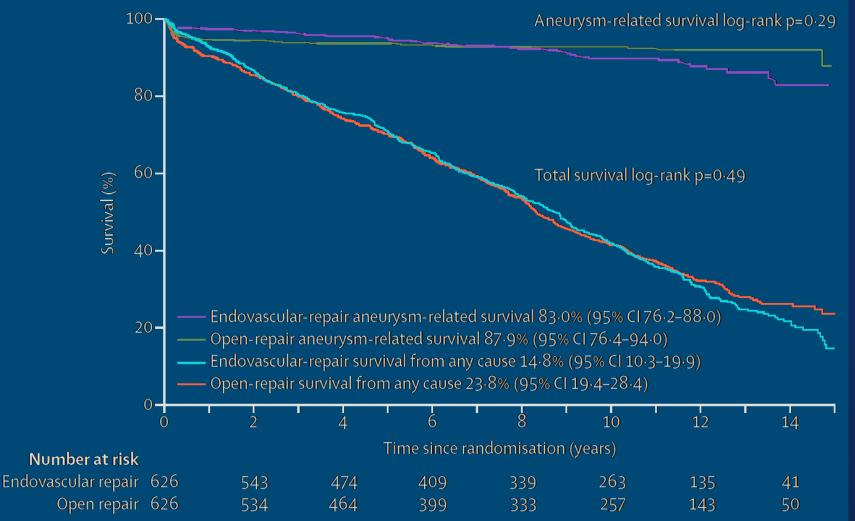
N Engl J Med 2010;362:1863-71


RCTs; Elective Open Repair vs. EVAR

Endovascular versus Open Repair of Abdominal Aortic Aneurysm

The United Kingdom EVAR Trial Investigators*

Graft-related Complication


Re-intervention

тстар2024

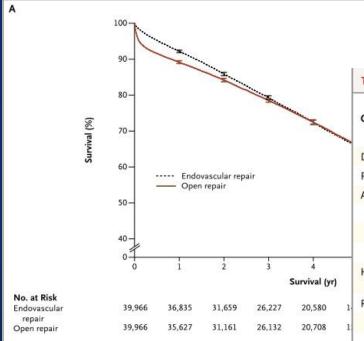
15 years follow-up of EVAR 1

TCTAP2024

Lancet 2016; 388: 2366-74

RCTs; Elective Open Repair vs. EVAR

Trial	Short-term Death	Long-term Death
EVAR1 trial		
EVAR (n=626)	1.8% at 30d	23.1% at 4y
Open AAA (n=626)	4.3% at 30d	22.3% at 4y
DREAM trial		
EVAR (n=173)	1.2% at 30d	31.1% at 6y
Open AAA (n=178)	4.6% at 30d	30.1% at 6y
OVER trial		
EVAR (n=444)	0.5% at 30d	32.9% at 8y
Open AAA (n=437)	3.0% at 30d	33.4% at 8y


- (1) Perioperative morbidity and mortality rates are significantly lower after EVAR
- (2) Short-term survival advantage of EVAR diminishes during long-term FU, the long-term survival rates of patients are similar in both groups.
- (3) Although the re-intervention rate after EVAR is higher than after open repair, most of these re-interventions are performed with catheter-based techniques, albeit at overall higher cost

Real World

39,966 matched cohorts of Medicare beneficiaries From 2001 through 2008

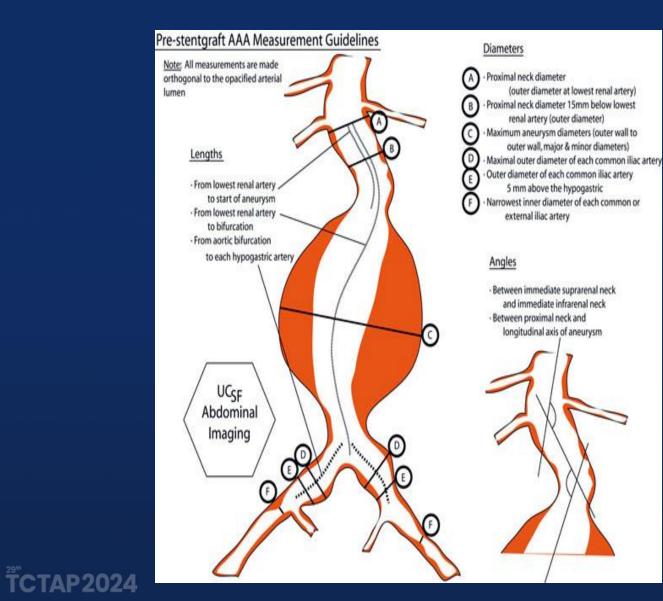
Table 3. Eight-Year Outcomes after Endovascular and Open Repair of Abdominal A	Aortic Aneury	sm.
--	----------------------	-----

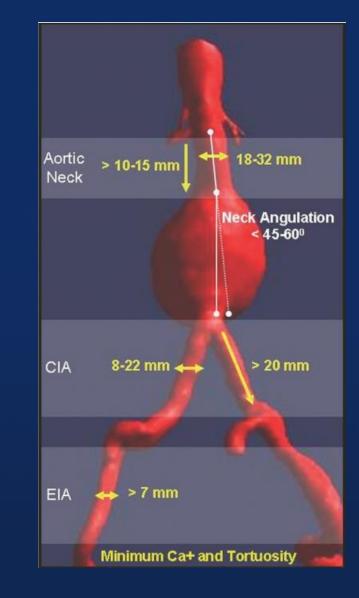
	Outcome	Endovascular Repair (N=39,966)	Open Repair (N = 39,966)	P Value
-		no. of patients	; (%) *	
	Death	14,548 (54.9)	14,681 (54.7)	0.76
	Rupture of aneurysm	962 (5.4)	353 (1.4)	<0.001
	Any aneurysm-related intervention	4,165 (18.8)	754 (3.7)	<0.001
	Major reintervention	392 (2.3)	186 (0.8)	< 0.001
	Minor reintervention	3,924 (17.5)	597 (3.1)	< 0.001
	Minor reintervention for embolization	1,857 (8.0)	161 (1.0)	<0.001
	Hospitalization for abdominal aortic aneurysm without reintervention	233 (1.2)	55 (0.3)	<0.001
1	Reintervention for complications related to laparotomy	1,695 (8.2)	4,427 (17.7)	< 0.001
1	Repair of a hernia of the abdominal wall	610 (2.7)	3,070 (11.2)	< 0.001
	Lysis of adhesions without bowel resection	238 (1.4)	654 (3.1)	< 0.001
	Bowel resection	1,035 (5.2)	1,199 (6.0)	0.008
	Admission for bowel obstruction without surgery	3,510 (17.3)	4,805 (22.2)	< 0.001
	Aneurysm-related intervention or intervention for compli- cations related to laparotomy	5,614 (25.1)	5,034 (20.6)	<0.001
	Hospitalization related to aneurysm or for complications related to laparotomy, without intervention	3,710 (17.9)	4,846 (22.0)	<0.001
	Reintervention or hospitalization without intervention for rupture, aneurysm, or complications related to laparotomy	6,279 (27.8)	5,355 (21.8)	<0.001

N Engl J Med 2015;373:328-38

Maturation of EVAR

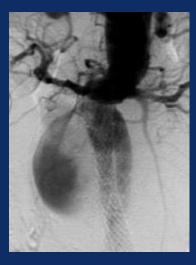
Now, EVAR is an ambulatory procedure


FDA approved Current Generation EVAR Devices



тстар2024

Planning is KEY Comprehensive aortic assessment



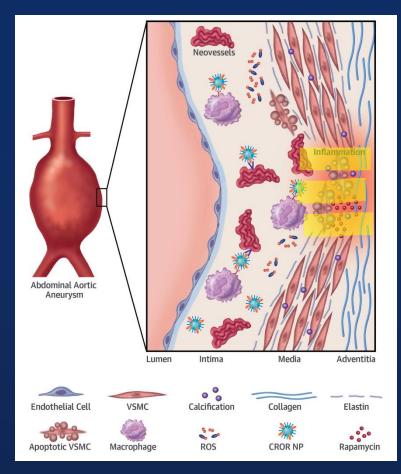
CVRI

Aortic Endografts Current Limitations

- Proximal neck diameters 18-32 mm
- Proximal neck lengths (supra and infra renal attachment)
 5-15 mm
- Iliac artery size for delivery 6-9 mm
- Iliac artery attachment site diameter 8-20 mm
- Angle of neck to aneurysm <60°

US FDA Approval of the INCRAFT AAA Stent

FDA U.S. FOOD & DR	UG		A to Z Index Follo Search FDA	w FDA En Es	pañol
E Home Food Drugs Medical I	Devices Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobacco Products
Medical Devices					
Home > Medical Devices > Products and	d Medical Procedures > Device Approva	Is and Clearances > Recently-/	Approved Devices		
Recently-Approved Devices	INCRAFT® AAA	Stent Graft	System	- P15	0002
2019 Device Approvals	f SHARE STWEET in LINKEDIN	🧿 PIN IT 📓 EMAIL 🔒 PRIN	т		
2018 Device Approvals					
	This is a brief overview of information				
	Summary of Safety and Effectivene product, its indications for use, and Product Name: INCRAFT® AAA 5	the basis for FDA's approv	•	complete info	ormation on this
	PMA Applicant: Cordis Corp. (A Ca Address: 1820 McCarthy Blvd. Mill	ardinal Health Company)			


PMA Applicant: Cordis Corp. (A Cardinal Health Company) Address: 1820 McCarthy Blvd, Milpitas, CA, USA 95035 Approval Date: November 27, 2018 Approval Letter: Approval Order

²*CTAP2024

Approval Date : November 27, 2018

A Targeting Nanotherapy for Abdominal Aortic Aneurysms

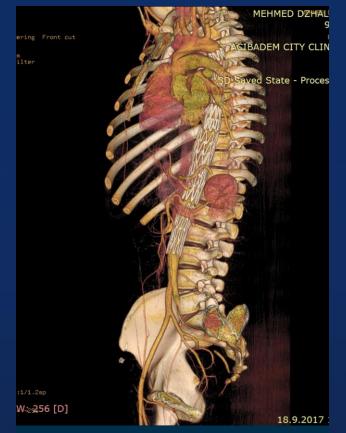
Cheng J et al. J Am Coll Cardiol. 2018 Nov 27;72(21):2591-2605

Decision Making and Treatment Selection for Complex AAA

- Short necks and short seal zone...not a good long term solution (no real data)
- Fenestrated grafts provide an excellent seal...reinterventions necessary
- Long term follow up is imperative
- Low / Moderate risk patients should be considered for open repair at high volume centers
- Especially true for young patients given long term ARM with EVAR

The role of noncovered stents for the treatment of malperfusion syndrome in type A and B aortic dissection

Aortic stents for AD. 1 year follow up:	
Clinical:	
Aorta related mortality	0%
Mortality 0% Late neurological complications	0%
Normal and normalized kidney function	38/38 (100%)
Device related outcomes:	
Device related failure	0%
Aortic stent thrombosis	0%
Side branch stent thrombosis	0%
Preserved covered side branches flow 98% 1. One renal artery arising from false lumen thrombosed	
Additional late procedures (more than 3 months after)	4/38


тстар2024

Zoran Stankov, MD, TCT 2018

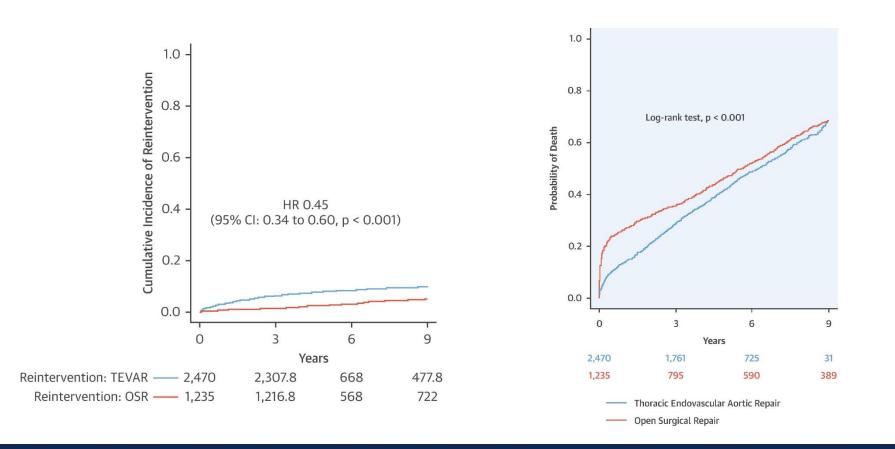
First-in-man experience with endovascular tre atment of type B aortic dissection in children

15yrs old

17 yrs old

Ivo Petrov, MD, PhD, FESC, FACC, TCT 2018

Changing Paradigms in Aortic Dissection


- Paradigm shift in therapy for TBAD
- All CTBAD should undergo TEVAR as first line therapy
- UTBAD patients with high risk criteria (2/3 of the cohort): TAD >44, FLD>22, Age >60 are candidates for OMT+TEVAR
- UTBAD patients with no high risk criteria (1/3 of the cohort): should be counseled about the risk/benefits of OMT vs. OMT+TEVAR

Ali Azizzadeh, Presenation at Controversies and Advances 2018

TEAVR vs OSR Reintervention & Mortality

Chiu, P. et al. J Am Coll Cardiol. 2019;73(6):643-51.

Meta-analysis of long-term survival (3 years)

Reference	Hazard ratio	Hazard ratio	Weight (%)
RCTs			
EVAR ³	- + -	1.00 (0.88, 1.13)	6.89
DREAM ¹⁷		0.96 (0.77, 1.21)	4.34
ACE ¹⁸		0.93 (0.67, 1.30)	2.76
OVER ¹⁹	_ ↓ ⊢	1.06 (0.92, 1.23)	6.32
Subtotal ($l^2 = 0\%$, $P = 0.835$)	•	1.01 (0.93, 1.10)	20.32
Administrative registry studies			
Behrendt et al.4		1.17 (1.07, 1.28)	7.79
Schermerhorn et al.20		1.20 (1.18, 1.22)	8.99
Wahlgren <i>et al</i> . ²¹		1.08 (0.98, 1.19)	7.51
Siracuse et al. ²⁶		0.99 (0.99, 1.15)	8.11
Chang et al. ³²	+	1.00 (0.96, 1.04)	8.82
Subtotal ($l^2 = 95.9\%$, $P < 0.001$)		1.08 (0.98, 1.20)	41.23
Cohort studies			
García-Madrid et al.37		→ 1.22 (0.50, 2.98)	0.51
Diehm et al. ³⁸	•	1.00 (0.57, 1.76)	1.19
Lee et al. ⁴⁶	•	0.94 (0.64, 1.37)	2.27
Chahwan et al.48	+	0.88 (0.75, 1.03)	5.96
Sugimoto et al.50		0.99 (0.74, 1.33)	3.23
Mazzaccaro et al.53	<u> </u>	0.99 (0.86, 1.14)	6.34
Huang et al.54	<u> </u>	0.94 (0.82, 1.08)	6.56
Lee et al. ⁵⁵	- • E -	0.90 (0.77, 1.05)	5.95
Majd <i>et al</i> . ⁵⁶		0.99 (0.74, 1.32)	3.33
Arko et al. ⁵⁷		1.05 (0.54, 2.06)	0.88
Majd et al. ⁶⁶		0.91 (0.62, 1.34)	2.23
Subtotal ($I^2 = 0\%$, $P = 0.995$)		0.94 (0.88, 1.00)	38.45
Subtotal $(r = 0\%, r = 0.333)$			
Overall (<i>I</i> ² =86·5%, <i>P</i> <0·001)	•	1.01 (0.95, 1.08)	100.00

тстар2024

Bulder RMA et al. Br J Surg. 2019 Apr;106(5):523-533

Meta-analysis of long-term survival (5 years)

Reference	Hazard ra	tio	Hazard ratio	Weight (%)
RCTs				
EVAR ³		-	1.00 (0.88, 1.14)	2.03
DREAM ¹⁷		_	0.94 (0.74, 1.19)	0.61
OVER ¹⁹		_	1.03 (0.87, 1.22)	1.23
Subtotal ($I^2 = 0\%$, $P = 0.830$)	•		1.00 (0.91, 1.10)	3.88
Administrative registry studies				
Behrendt et al.4	-	ł	0.97 (0.83, 1.14)	1.41
Schermerhorn et al.20	•		1.00 (0.98, 1.02)	70.36
Wahlgren et al. ²¹	→		0.91 (0.79, 1.05)	1.81
Siracuse <i>et al.</i> ²⁶			1.01 (0.84, 1.22)	0.99
Chang et al. ³²	•		1.03 (0.98, 1.08)	15.77
Subtotal ($I^2 = 0\%$, $P = 0.507$)	•		1.00 (0.98, 1.02)	90.33
Cohort studies				
Diehm <i>et al</i> . ³⁸		•	1.16 (0.59, 2.28)	0.08
Lee et al. ⁴⁶	_		0.98 (0.62, 1.55)	0.17
Chahwan et al.48			0.98 (0.80, 1.19)	0.93
Sugimoto et al.50			0.93 (0.61, 1.42)	0.20
Mazzaccaro et al.53			1.05 (0.89, 1.24)	1.30
Huang et al.54			0.95 (0.81, 1.12)	1.40
Lee et al.55			0.88 (0.74, 1.05)	1.18
Majd <i>et al</i> . ⁵⁶			1.05 (0.77, 1.44)	0.37
Majd et al. ⁶⁶			0.76 (0.46, 1.25)	0.15
Subtotal ($I^2 = 0\%$, $P = 0.894$)	•		0.96 (0.89, 1.04)	5.78
Overall ($l^2 = 0\%$, $P = 0.947$)	•		1.00 (0.98, 1.02)	100.00
		Г		
	Favours OSR 1.00	Favours EVAR		

Bulder RMA et al. Br J Surg. 2019 Apr;106(5):523-533

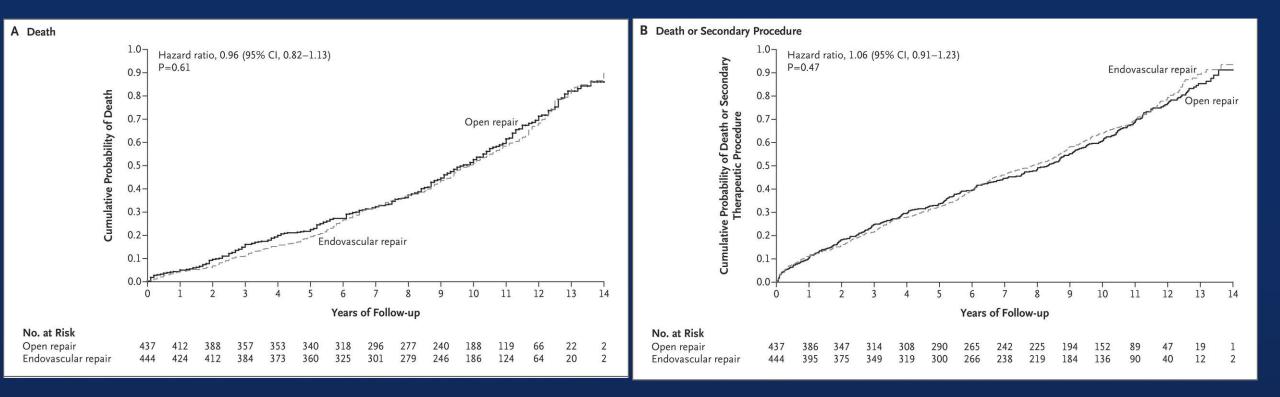
Meta-analysis of long-term survival (10 years)

Reference	Hazard ratio	Hazard ratio	Weight (%
RCTs			
EVAR ³	- [•]-	1.05 (0.88, 1.25)	33.33
DREAM ¹⁷		1.02 (0.75, 1.38)	15·01
Subtotal ($I^2 = 0\%$, $P = 0.879$)		1.04 (0.90, 1.21)	48.34
Administrative registry studies			
Siracuse et al. ²⁶		1.08 (0.57, 2.06)	3.93
Subtotal		1.08 (0.57, 2.06)	3.93
Cohort studies			
Diehm <i>et al</i> . ³⁸			1.75
Lee <i>et al</i> . ⁴⁶ –		0.72 (0.30, 1.73)	2.21
Mazzaccaro et al.53		1.18 (0.89, 1.57)	16.89
Huang et al. ⁵⁴		0.67 (0.48, 0.94)	12.91
Lee et al. ⁵⁵	 _	0.80 (0.54, 1.19)	9.71
Majd <i>et al</i> . ⁵⁶		1.23 (0.73, 2.52)	4.26
Subtotal (<i>I</i> ² =38·8%, <i>P</i> =0·147)		0.91 (0.71, 1.17)	47.72
Overall ($I^2 = 14.2\%$, $P = 0.315$		0.98 (0.86, 1.12)	100.00
	Favours OSR 1.00 Favours		

Bulder RMA et al. Br J Surg. 2019 Apr;106(5):523-533

тстар2024

Meta-analysis of long-term survival after EVAR or OSR


	Relative survival ratio		
	3 years	5 years	10 years
EVAR	0-94 (0-92, 0-96)	0.91 (0.87, 0.94)	0.76 (0.67, 0.86)
OSR	0.96 (0.95, 0.98)	0.91 (0.88, 0.94)	0.76 (0.69, 0.85)

Bulder RMA et al. Br J Surg. 2019 Apr;106(5):523-533

Long-term survival after EVAR or OSR

Frank A. Lederle et al. N Engl J Med. 2019;380:2126-2135

